Regulation of mitochondrial proteostasis by the proton gradient
Ontology highlight
ABSTRACT: Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multi-proteomic approach to demonstrate regulation of the m-AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca2+/H+ exchanger in the mitochondrial inner membrane, which binds to and inhibits the m-AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca2+ efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m-AAA protease. The m-AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca2+ signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism.
Project description:Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m-AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca2+ /H+ exchanger in the mitochondrial inner membrane, which binds to and inhibits the m-AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca2+ efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m-AAA protease. The m-AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca2+ signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism.
Project description:Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multi-proteomic approach to demonstrate regulation of the m-AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca2+/H+ exchanger in the mitochondrial inner membrane, which binds to and inhibits the m-AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca2+ efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m-AAA protease. The m-AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca2+ signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism.
Project description:Mitochondria extrude protons across their inner membrane to generate the mitochondrial membrane potential (ΔΨ(m)) and pH gradient (ΔpH(m)) that both power ATP synthesis. Mitochondrial uptake and efflux of many ions and metabolites are driven exclusively by ΔpH(m), whose in situ regulation is poorly characterized. Here, we report the first dynamic measurements of ΔpH(m) in living cells, using a mitochondrially targeted, pH-sensitive YFP (SypHer) combined with a cytosolic pH indicator (5-(and 6)-carboxy-SNARF-1). The resting matrix pH (∼7.6) and ΔpH(m) (∼0.45) of HeLa cells at 37 °C were lower than previously reported. Unexpectedly, mitochondrial pH and ΔpH(m) decreased during cytosolic Ca(2+) elevations. The drop in matrix pH was due to cytosolic acid generated by plasma membrane Ca(2+)-ATPases and transmitted to mitochondria by P(i)/H(+) symport and K(+)/H(+) exchange, whereas the decrease in ΔpH(m) reflected the low H(+)-buffering power of mitochondria (∼5 mm, pH 7.8) compared with the cytosol (∼20 mm, pH 7.4). Upon agonist washout and restoration of cytosolic Ca(2+) and pH, mitochondria alkalinized and ΔpH(m) increased. In permeabilized cells, a decrease in bath pH from 7.4 to 7.2 rapidly decreased mitochondrial pH, whereas the addition of 10 μm Ca(2+) caused a delayed and smaller alkalinization. These findings indicate that the mitochondrial matrix pH and ΔpH(m) are regulated by opposing Ca(2+)-dependent processes of stimulated mitochondrial respiration and cytosolic acidification.
Project description:Photosynthesis produces organic carbon via a light-driven electron flow from H2O to CO2 that passes through a pool of plastoquinone molecules. These molecules are either present in the photosynthetic thylakoid membranes, participating in photochemistry (photoactive pool), or stored (non-photoactive pool) in thylakoid-attached lipid droplets, the plastoglobules. The photoactive pool acts also as a signal of photosynthetic activity allowing the adaptation to changes in light condition. Here we show that, in Arabidopsis thaliana, proton gradient regulation 6 (PGR6), a predicted atypical kinase located at plastoglobules, is required for plastoquinone homoeostasis, i.e. to maintain the photoactive plastoquinone pool. In a pgr6 mutant, the photoactive pool is depleted and becomes limiting under high light, affecting short-term acclimation and photosynthetic efficiency. In the long term, pgr6 seedlings fail to adapt to high light and develop a conditional variegated leaf phenotype. Therefore, PGR6 activity, by regulating plastoquinone homoeostasis, is required to cope with high light.
Project description:Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome c oxidase (CcO), are reviewed. These proteins all use water filled proton transfer paths. The proton pumps, that move protons uphill from low to high concentration compartments, also utilize Proton Loading Sites (PLS), that transiently load and unload protons and gates, which block backflow of protons. PLS and gates should be synchronized so PLS proton affinity is high when the gate opens to the side with few protons and low when the path is open to the high concentration side. Proton transfer paths in the proteins we describe have different design features. Linear paths are seen with a unique entry and exit and a relatively straight path between them. Alternatively, paths can be complex with a tangle of possible routes. Likewise, PLS can be a single residue that changes protonation state or a cluster of residues with multiple charge and tautomer states.
Project description:Photosynthesis is an essential pathway providing the chemical energy and reducing equivalents that sustain higher plant metabolism. It relies on sunlight, which is an inconstant source of energy that fluctuates in both intensity and spectrum. The fine and rapid tuning of the photosynthetic apparatus is essential to cope with changing light conditions and increase plant fitness. Recently PROTON GRADIENT REGULATION 6 (PGR6-ABC1K1), an atypical plastoglobule-associated kinase, was shown to regulate a new mechanism of light response by controlling the homeostasis of photoactive plastoquinone (PQ). PQ is a crucial electron carrier existing as a free neutral lipid in the photosynthetic thylakoid membrane. Perturbed homeostasis of PQ impairs photosynthesis and plant acclimation to high light. Here we show that a homologous kinase, ABC1K3, which like PGR6-ABC1K1 is associated with plastoglobules, also contributes to the homeostasis of the photoactive PQ pool. Contrary to PGR6-ABC1K1, ABC1K3 disfavors PQ availability for photosynthetic electron transport. In fact, in the abc1k1/abc1k3 double mutant the pgr6(abc1k1) the photosynthetic defect seen in the abc1k1 mutant is mitigated. However, the PQ concentration in the photoactive pool of the double mutant is comparable to that of abc1k1 mutant. An increase of the PQ mobility, inferred from the kinetics of its oxidation in dark, contributes to the mitigation of the pgr6(abc1k1) photosynthetic defect. Our results also demonstrate that ABC1K3 contributes to the regulation of other mechanisms involved in the adaptation of the photosynthetic apparatus to changes in light quality and intensity such as the induction of thermal dissipation and state transitions. Overall, we suggests that, besides the absolute concentration of PQ, its mobility and exchange between storage and active pools are critical for light acclimation in plants.
Project description:Alzheimer's disease is a common and devastating disease characterized by aggregation of the amyloid-β peptide. However, we know relatively little about the underlying molecular mechanisms or how to treat patients with Alzheimer's disease. Here we provide bioinformatic and experimental evidence of a conserved mitochondrial stress response signature present in diseases involving amyloid-β proteotoxicity in human, mouse and Caenorhabditis elegans that involves the mitochondrial unfolded protein response and mitophagy pathways. Using a worm model of amyloid-β proteotoxicity, GMC101, we recapitulated mitochondrial features and confirmed that the induction of this mitochondrial stress response was essential for the maintenance of mitochondrial proteostasis and health. Notably, increasing mitochondrial proteostasis by pharmacologically and genetically targeting mitochondrial translation and mitophagy increases the fitness and lifespan of GMC101 worms and reduces amyloid aggregation in cells, worms and in transgenic mouse models of Alzheimer's disease. Our data support the relevance of enhancing mitochondrial proteostasis to delay amyloid-β proteotoxic diseases, such as Alzheimer's disease.
Project description:Modification by the ubiquitin-like protein SUMO affects hundreds of cellular substrate proteins and regulates a wide variety of physiological processes. While the SUMO system appears to predominantly target nuclear proteins and, to a lesser extent, cytosolic proteins, hardly anything is known about the SUMOylation of proteins targeted to membrane-enclosed organelles. Here, we identify a large set of structurally and functionally unrelated mitochondrial proteins as substrates of the SUMO pathway in yeast. We show that SUMO modification of mitochondrial proteins does not rely on mitochondrial targeting and, in fact, is strongly enhanced upon import failure, consistent with the modification occurring in the cytosol. Moreover, SUMOylated forms of mitochondrial proteins particularly accumulate in HSP70- and proteasome-deficient cells, suggesting that SUMOylation participates in cellular protein quality control. We therefore propose that SUMO serves as a mark for nonfunctional mitochondrial proteins, which only sporadically arise in unstressed cells but strongly accumulate upon defective mitochondrial import and impaired proteostasis. Overall, our findings provide support for a role of SUMO in the cytosolic response to aberrant proteins.
Project description:Mitochondrial dysfunction and proteostasis failure frequently coexist as hallmarks of neurodegenerative disease. How these pathologies are related is not well understood. Here, we describe a phenomenon termed MISTERMINATE (mitochondrial-stress-induced translational termination impairment and protein carboxyl terminal extension), which mechanistically links mitochondrial dysfunction with proteostasis failure. We show that mitochondrial dysfunction impairs translational termination of nuclear-encoded mitochondrial mRNAs, including complex-I 30kD subunit (C-I30) mRNA, occurring on the mitochondrial surface in Drosophila and mammalian cells. Ribosomes stalled at the normal stop codon continue to add to the C terminus of C-I30 certain amino acids non-coded by mRNA template. C-terminally extended C-I30 is toxic when assembled into C-I and forms aggregates in the cytosol. Enhancing co-translational quality control prevents C-I30 C-terminal extension and rescues mitochondrial and neuromuscular degeneration in a Parkinson's disease model. These findings emphasize the importance of efficient translation termination and reveal unexpected link between mitochondrial health and proteome homeostasis mediated by MISTERMINATE.
Project description:Although microgravity has been implicated in osteoporosis, the precise molecular mechanism remains elusive. Here, we found that microgravity might induce mitochondrial protein buildup in skeletal muscle, alongside reduced levels of LONP1 protein. We revealed that disruptions in mitochondrial proteolysis, induced by the targeted skeletal muscle-specific deletion of the essential mitochondrial protease LONP1 or by the acute inducible deletion of muscle LONP1 in adult mice, cause reduced bone mass and compromised mechanical function. Moreover, the bone loss and weakness phenotypes were recapitulated in skeletal muscle-specific overexpressing ΔOTC mice, a known protein degraded by LONP1. Mechanistically, mitochondrial proteostasis imbalance triggered the mitochondrial unfolded protein response (UPRmt) in muscle, leading to an up-regulation of multiple myokines, including FGF21, which acts as a pro-osteoclastogenic factor. Surprisingly, this mitochondrial proteostasis stress influenced muscle-bone crosstalk independently of ATF4 in skeletal muscle. Furthermore, we established a marked association between serum FGF21 levels and bone health in humans. These findings emphasize the pivotal role of skeletal muscle mitochondrial proteostasis in responding to alterations in loading conditions and in coordinating UPRmt to modulate bone metabolism.