Targeting of GPCR and EGF receptor overcomes PI3K inhibitor resistance in PTEN-null breast cancer
Ontology highlight
ABSTRACT: Triple negative breast cancer (TNBC) has poorer prognosis compared to other types of breast cancers due to the lack of effective therapies and markers for patient stratification. Loss of PTEN tumor suppressor gene expression is a frequent event in TNBC, resulting in over-activation of the PI 3-Kinase (PI3K) pathway and sensitivity to its inhibition. However, PI3K pathway inhibitors show limited efficacy as monotherapies on these tumors. We report a whole genome screen to identify targets whose inhibition enhanced the effects of different PI3K pathway inhibitors on PTEN-null TNBC. This identified a signaling network that relies on both the G-protein-coupled receptor for thrombin (PAR1/F2R) and downstream G protein ?? subunits and also epidermal growth factor receptor (EGFR) for the activation of the PI3K isoform p110? and AKT. Compensation mechanisms involving these two branches of the pathway could bypass PI3K blockade, but combination targeting of both EGFR and PI3K? suppressed ribosomal protein S6 phosphorylation and exerted anti-tumor activity both in vitro and in vivo, suggesting a new potential therapeutic strategy for PTEN-null TNBC.
Project description:Triple-negative breast cancer (TNBC) has poorer prognosis compared to other types of breast cancers due to the lack of effective therapies and markers for patient stratification. Loss of PTEN tumor suppressor gene expression is a frequent event in TNBC, resulting in over-activation of the PI 3-kinase (PI3K) pathway and sensitivity to its inhibition. However, PI3K pathway inhibitors show limited efficacy as monotherapies on these tumors. We report a whole-genome screen to identify targets whose inhibition enhanced the effects of different PI3K pathway inhibitors on PTEN-null TNBC. This identified a signaling network that relies on both the G protein-coupled receptor for thrombin (PAR1/F2R) and downstream G protein βγ subunits and also epidermal growth factor receptor (EGFR) for the activation of the PI3K isoform p110β and AKT. Compensation mechanisms involving these two branches of the pathway could bypass PI3K blockade, but combination targeting of both EGFR and PI3Kβ suppressed ribosomal protein S6 phosphorylation and exerted anti-tumor activity both in vitro and in vivo, suggesting a new potential therapeutic strategy for PTEN-null TNBC.
Project description:MDA-MB-468 cells were infected with a whole-genome shRNA library, treated with PI3Kbeta inhibitor (AZD8186), pan class I PI3K inhibitor (GDC0941) or AKT inhibitor (MK2206) for 6+6 days. At the end of the treatment genomic DNA was extracted. PCR amplified and shRNAs inserts were quantified by NGS.
Project description:BackgroundPI3K signaling is frequently activated in breast cancer and is targeted by PI3K inhibitors. However, resistance of tumor cells to PI3K inhibition, often mediated by activated receptor tyrosine kinases, is commonly observed and reduces the potency of PI3K inhibitors. Therefore, new treatment strategies to overcome resistance to PI3K inhibitors are urgently needed to boost their efficacy. The phosphatase SHP2, which plays a crucial role in mediating signal transduction between receptor tyrosine kinases and both the PI3K and MAPK pathways, is a potential target for combination treatment.MethodsWe tested combinations of PI3K and SHP2 inhibitors in several experimental breast cancer models that are resistant to PI3K inhibition. Using cell culturing, biochemical and genetic approaches, we evaluated tumor cell proliferation and signaling output in cells treated with PI3K and SHP2 inhibitors.ResultsCombination treatment with PI3K and SHP2 inhibitors counteracted both acquired and intrinsic breast cancer cell resistance to PI3K inhibition that is mediated by activated receptor tyrosine kinases. Dual PI3K and SHP2 inhibition blocked proliferation and led to sustained inactivation of PI3K and MAPK signaling, where resistant cells rapidly re-activated these pathways upon PI3K inhibitor monotreatment. In addition, we demonstrate that overexpression of SHP2 induced resistance to PI3K inhibition, and that SHP2 was frequently activated during the development of PI3K inhibitor resistance after prolonged treatment of sensitive cells.ConclusionsOur results highlight the importance of SHP2 as a player in resistance to PI3K inhibitors. Combination treatment with PI3K and SHP2 inhibitors could pave the way for significant improvements in therapies for breast cancer.
Project description:Letrozole is a commonly used treatment option for metastatic hormone receptor-positive (HR+) breast cancer, but many patients ultimately relapse. Due to the importance of phosphoinositide-3 kinase (PI3K) in breast cancer, PI3K inhibitors such as taselisib are attractive for combination with endocrine therapies such as letrozole. Taselisib was evaluated as a single agent and in combination with letrozole in a breast cancer cell line engineered to express aromatase. The combination of taselisib and letrozole decreased cellular viability and increased apoptosis relative to either single agent. Signaling cross-talk between the PI3K and ER pathways was associated with efficacy for the combination. In a secreted factor screen, multiple soluble factors, including members of the epidermal and fibroblast growth factor families, rendered breast cancer cells non-responsive to letrozole. It was discovered that many of these factors signal through the PI3K pathway and cells remained sensitive to taselisib in the presence of the soluble factors. We also found that letrozole resistant lines have elevated PI3K pathway signaling due to an increased level of p110α, but are still sensitive to taselisib. These data provide rationale for clinical evaluation of PI3K inhibitors to overcome resistance to endocrine therapies in ER+ breast cancer.
Project description:Activating PIK3CA mutations, present in up to 40% of hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (Her2-) breast cancer (BC) patients, can be effectively targeted with the alpha isoform-specific PI3K inhibitor Alpelisib. This treatment significantly improves outcomes for HR+, Her2-, and PIK3CA-mutated metastatic BC patients. However, acquired resistance, often due to aberrant activation of the mTOR complex 1 (mTORC1) pathway, remains a significant clinical challenge. Our study, using in vitro and orthotopic xenograft mouse models, demonstrates that constitutively active mTORC1 signaling renders PI3K inhibitor-resistant BC exquisitely sensitive to various drugs targeting cancer metabolism. Mechanistically, mTORC1 suppresses the induction of autophagy during metabolic perturbation, leading to energy stress, a critical depletion of aspartate, and ultimately cell death. Supporting this mechanism, BC cells with CRISPR/Cas9-engineered knockouts of canonical autophagy genes showed similar vulnerability to metabolically active drugs. In BC patients, high mTORC1 activity, indicated by 4E-BP1T37/46 phosphorylation, correlated with p62 accumulation, a sign of impaired autophagy. Together, these markers predicted poor overall survival in multiple BC subgroups. Our findings reveal that aberrant mTORC1 signaling, a common cause of PI3K inhibitor resistance in BC, creates a druggable metabolic vulnerability by suppressing autophagy. Additionally, the combination of 4E-BP1T37/46 phosphorylation and p62 accumulation serves as a biomarker for poor overall survival, suggesting their potential utility in identifying BC patients who may benefit from metabolic therapies.
Project description:Despite objective responses to PARP inhibition and improvements in progression-free survival compared to standard chemotherapy in patients with BRCA-associated triple-negative breast cancer (TNBC), benefits are transitory. Using high dimensional single-cell profiling of human TNBC, here we demonstrate that macrophages are the predominant infiltrating immune cell type in BRCA-associated TNBC. Through multi-omics profiling we show that PARP inhibitors enhance both anti- and pro-tumor features of macrophages through glucose and lipid metabolic reprogramming driven by the sterol regulatory element-binding protein 1 (SREBP-1) pathway. Combined PARP inhibitor therapy with CSF-1R blocking antibodies significantly enhanced innate and adaptive anti-tumor immunity and extends survival in BRCA-deficient tumors in vivo and is mediated by CD8+ T-cells. Collectively, our results uncover macrophage-mediated immune suppression as a liability of PARP inhibitor treatment and demonstrate combined PARP inhibition and macrophage targeting therapy induces a durable reprogramming of the tumor microenvironment, thus constituting a promising therapeutic strategy for TNBC.
Project description:We generated cell lines resistant to BRAF inhibitors and show that the EGF receptor (EGFR)-SRC family kinase (SFK)-STAT3 signaling pathway was upregulated in these cells. In addition to driving proliferation of resistant cells, this pathway also stimulated invasion and metastasis. EGFR inhibitors cooperated with BRAF inhibitors to block the growth of the resistant cells in vitro and in vivo, and monotherapy with the broad specificity tyrosine kinase inhibitor dasatinib blocked growth and metastasis in vivo. We analyzed tumors from patients with intrinsic or acquired resistance to vemurafenib and observed increased EGFR and SFK activity. Furthermore, dasatinib blocked the growth and metastasis of one of the resistant tumors in immunocompromised mice. Our data show that BRAF inhibitor-mediated activation of EGFR-SFK-STAT3 signaling can mediate resistance in patients with BRAF-mutant melanoma. We describe 2 treatments that seem to overcome this resistance and could deliver therapeutic efficacy in patients with drug-resistant BRAF-mutant melanoma.Therapies that target the driver oncogenes in cancer can achieve remarkable responses if patients are stratified for treatment. However, as with conventional therapies, patients often develop acquired resistance to targeted therapies, and a proportion of patients are intrinsically resistant and fail to respond despite the presence of an appropriate driver oncogene mutation. We found that the EGFR/SFK pathway mediated resistance to vemurafenib in BRAF -mutant melanoma and that BRAF and EGFR or SFK inhibition blocked proliferation and invasion of these resistant tumors, providing potentially effective therapeutic options for these patients.
Project description:Combined targeting of G-protein-coupled receptor and EGF receptor signaling overcomes resistance to PI3K pathway inhibitors in PTEN-null triple negative breast cancer
Project description:Melanomas that result from mutations in the gene encoding BRAF often become resistant to BRAF inhibition (BRAFi), with multiple mechanisms contributing to resistance. While therapy-induced autophagy promotes resistance to a number of therapies, especially those that target PI3K/mTOR signaling, its role as an adaptive resistance mechanism to BRAFi is not well characterized. Using tumor biopsies from BRAF(V600E) melanoma patients treated either with BRAFi or with combined BRAF and MEK inhibition, we found that BRAFi-resistant tumors had increased levels of autophagy compared with baseline. Patients with higher levels of therapy-induced autophagy had drastically lower response rates to BRAFi and a shorter duration of progression-free survival. In BRAF(V600E) melanoma cell lines, BRAFi or BRAF/MEK inhibition induced cytoprotective autophagy, and autophagy inhibition enhanced BRAFi-induced cell death. Shortly after BRAF inhibitor treatment in melanoma cell lines, mutant BRAF bound the ER stress gatekeeper GRP78, which rapidly expanded the ER. Disassociation of GRP78 from the PKR-like ER-kinase (PERK) promoted a PERK-dependent ER stress response that subsequently activated cytoprotective autophagy. Combined BRAF and autophagy inhibition promoted tumor regression in BRAFi-resistant xenografts. These data identify a molecular pathway for drug resistance connecting BRAFi, the ER stress response, and autophagy and provide a rationale for combination approaches targeting this resistance pathway.