Dataset Information


Genetic diversity among Borrelia strains determined by single-strand conformation polymorphism analysis of the ospC gene and its association with invasiveness.

ABSTRACT: Lyme borreliosis (LB) is a tick-borne spirochetal infection caused by three Borrelia species: Borrelia afzelii, B. garinii, and B. burgdorferi sensu stricto. LB evolves in two stages: a skin lesion called erythema migrans and later, different disseminated forms (articular, neurological, cardiac.). Previous research based on analysis of ospC sequences allowed the definition of 58 groups (divergence of <2% within a group and >8% between groups). Only 10 of these groups include all of the strains isolated from disseminated forms that are considered invasive. The aim of this study was to determine whether or not invasive strains belong to restricted ospC groups by testing human clinical strains isolated from disseminated forms. To screen for ospC genetic diversity, we used single-strand conformation polymorphism (SSCP) analysis. Previously known ospC sequences from 44 different strains were first tested, revealing that each ospC group had a characteristic SSCP pattern. Therefore, we studied 80 disseminated-form isolates whose ospC sequences were unknown. Of these, 28 (35%) belonged to previously known invasive groups. Moreover, new invasive groups were identified: six of B. afzelii, seven of B. garinii, and one of B. burgdorferi sensu stricto. This study confirmed that invasive strains are not distributed among all 69 ospC groups but belong to only 24 groups. This suggests that OspC may be involved in the invasiveness of B. burgdorferi.

PROVIDER: S-EPMC262544 | BioStudies |

REPOSITORIES: biostudies

Similar Datasets

1995-01-01 | S-EPMC227889 | BioStudies
1995-01-01 | S-EPMC228286 | BioStudies
| S-EPMC104623 | BioStudies
1997-01-01 | S-EPMC230055 | BioStudies
| S-EPMC3318418 | BioStudies
| S-EPMC87927 | BioStudies
| S-EPMC2772371 | BioStudies
2015-05-12 | E-GEOD-68741 | ArrayExpress
| S-EPMC85444 | BioStudies
1993-01-01 | S-EPMC280819 | BioStudies