Dataset Information


Stabilization of Ca2+-permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation.

ABSTRACT: AMPA receptor (AMPAR) channel properties and function are regulated by its subunit composition and phosphorylation. Certain types of neural activity can recruit Ca(2+)-permeable (CP) AMPARs, such as GluR1 homomers, to synapses likely via lateral diffusion from extrasynaptic sites. Here we show that GluR1-S845 phosphorylation can alter the subunit composition of perisynaptic AMPARs by providing stability to GluR1 homomers. Using mice specifically lacking phosphorylation of the GluR1-S845 site (GluR1-S845A mutants), we demonstrate that this site is necessary for maintaining CP-AMPARs. Specifically, in the GluR1-S845A mutants, CP-AMPARs were absent from perisynaptic locations mainly due to lysosomal degradation. This regulation was mimicked by acute desphosphorylation of the GluR1-S845 site in wild-type mice by NMDA application. Furthermore, long-term depression (LTD) was associated with a reduction in perisynaptic CP-AMPAR levels. Our findings suggest that GluR1-S845 is necessary for maintaining CP-AMPARs on the surface, especially at perisynaptic sites, and suggest that the regulation of these receptors is involved in synaptic plasticity.

PROVIDER: S-EPMC2785287 | BioStudies |

REPOSITORIES: biostudies

Similar Datasets

| S-EPMC3069067 | BioStudies
| S-EPMC2807233 | BioStudies
| S-EPMC2496888 | BioStudies
| S-EPMC4630208 | BioStudies
2014-01-01 | S-EPMC4254581 | BioStudies
| S-EPMC2712131 | BioStudies
| S-EPMC3129449 | BioStudies
| S-EPMC2679369 | BioStudies
| S-EPMC3922706 | BioStudies
| S-EPMC2900706 | BioStudies