Dataset Information


Identification of the receptor tyrosine kinase c-Met and its ligand, hepatocyte growth factor, as therapeutic targets in clear cell sarcoma.

ABSTRACT: Clear cell sarcoma (CCS), a childhood tumor of the tendons and aponeuroses, is uniformly fatal once it has metastasized because of its profound therapeutic resistance. CCS is characterized by production of a chimeric transcription factor, EWS-ATF1, which is formed as the result of a disease-specific chromosomal translocation. EWS-ATF1 activates the melanocyte transcription factor MITF, which in turn activates transcription of c-Met, an oncogenic receptor tyrosine kinase recently shown to be activated in CCS. Based on this connection, we hypothesized that c-Met inhibition may offer a strategy to treat CCS, as an indirect tactic to defeat a transforming pathway downstream of EWS-ATF1. Here, we show that primary CCS and CCS-derived cell lines express c-Met, which is activated in an autocrine fashion by its ligand hepatocyte growth factor (HGF)/scatter factor in some CCS cell lines. c-Met expression is critical for CCS invasion, chemotaxis, and survival. Blocking c-Met activity with a small-molecule inhibitor (SU11274) or a neutralizing antibody to its ligand HGF (AMG 102) significantly reduced CCS cell growth in culture. Similarly, AMG 102 significantly suppressed in vivo tumor growth in an autocrine xenograft model of CCS. Collectively, these findings suggest the HGF:c-Met signaling axis as a candidate therapeutic target to improve clinical management of CCS.


PROVIDER: S-EPMC2807989 | BioStudies | 2010-01-01

REPOSITORIES: biostudies

Similar Datasets

1000-01-01 | S-EPMC4076438 | BioStudies
2013-01-01 | S-EPMC3640275 | BioStudies
2013-01-01 | S-EPMC3561811 | BioStudies
2019-01-01 | S-EPMC6728361 | BioStudies
1000-01-01 | S-EPMC2671857 | BioStudies
2019-07-18 | GSE77203 | GEO
2019-08-01 | GSE124873 | GEO
2019-07-18 | GSE77204 | GEO
2013-04-04 | E-GEOD-41122 | ArrayExpress
2013-04-04 | E-GEOD-41121 | ArrayExpress