Dataset Information


Protein roles in group I intron RNA folding: the tyrosyl-tRNA synthetase CYT-18 stabilizes the native state relative to a long-lived misfolded structure without compromising folding kinetics.

ABSTRACT: The Neurospora crassa CYT-18 protein is a mitochondrial tyrosyl-tRNA synthetase that also promotes self-splicing of group I intron RNAs by stabilizing the functional structure in the conserved core. CYT-18 binds the core along the same surface as a common peripheral element, P5abc, suggesting that CYT-18 can replace P5abc functionally. In addition to stabilizing structure generally, P5abc stabilizes the native conformation of the Tetrahymena group I intron relative to a globally similar misfolded conformation that has only local differences within the core and is populated significantly at equilibrium by a ribozyme variant lacking P5abc (E(DeltaP5abc)). Here, we show that CYT-18 specifically promotes formation of the native group I intron core from this misfolded conformation. Catalytic activity assays demonstrate that CYT-18 shifts the equilibrium of E(DeltaP5abc) toward the native state by at least 35-fold, and binding assays suggest an even larger effect. Thus, similar to P5abc, CYT-18 preferentially recognizes the native core, despite the global similarity of the misfolded core and despite forming crudely similar complexes, as revealed by dimethyl sulfate footprinting. Interestingly, the effects of CYT-18 and P5abc on folding kinetics differ. Whereas P5abc inhibits refolding of the misfolded conformation by forming peripheral contacts that must break during refolding, CYT-18 does not display analogous inhibition, most likely because it relies to a greater extent on direct interactions with the core. Although CYT-18 does not encounter this RNA in vivo, our results suggest that it stabilizes its cognate group I introns relative to analogous misfolded intermediates. By specifically recognizing native structural features, CYT-18 may also interact with earlier folding intermediates to avoid RNA misfolding or to trap native contacts as they form. More generally, our results highlight the ability of a protein cofactor to stabilize a functional RNA structure specifically without incurring associated costs in RNA folding kinetics.

PROVIDER: S-EPMC2813312 | BioStudies |

REPOSITORIES: biostudies

Similar Datasets

| S-EPMC2582984 | BioStudies
| S-EPMC1177367 | BioStudies
| S-EPMC3706569 | BioStudies
| S-EPMC1636518 | BioStudies
| S-EPMC3227551 | BioStudies
| S-EPMC5562898 | BioStudies
| S-EPMC5048535 | BioStudies
| S-EPMC4177526 | BioStudies
| S-EPMC2905490 | BioStudies
| S-EPMC4211656 | BioStudies