Unknown

Dataset Information

0

A Phylogeny and Timescale for the Evolution of Pseudocheiridae (Marsupialia: Diprotodontia) in Australia and New Guinea.


ABSTRACT: PSEUDOCHEIRIDAE (MARSUPIALIA: Diprotodontia) is a family of endemic Australasian arboreal folivores, more commonly known as ringtail possums. Seventeen extant species are grouped into six genera (Pseudocheirus, Pseudochirulus, Hemibelideus, Petauroides, Pseudochirops, Petropseudes). Pseudochirops and Pseudochirulus are the only genera with representatives on New Guinea and surrounding western islands. Here, we examine phylogenetic relationships among 13 of the 17 extant pseudocheirid species based on protein-coding portions of the ApoB, BRCA1, ENAM, IRBP, Rag1, and vWF genes. Maximum parsimony, maximum likelihood, and Bayesian methods were used to estimate phylogenetic relationships. Two different relaxed molecular clock methods were used to estimate divergence times. Bayesian and maximum parsimony methods were used to reconstruct ancestral character states for geographic provenance and maximum elevation occupied. We find robust support for the monophyly of Pseudocheirinae (Pseudochirulus?+?Pseudocheirus), Hemibelidinae (Hemibelideus + Petauroides), and Pseudochiropsinae (Pseudochirops?+?Petropseudes), respectively, and for an association of Pseudocheirinae and Hemibelidinae to the exclusion of Pseudochiropsinae. Within Pseudochiropsinae, Petropseudes grouped more closely with the New Guinean Pseudochirops spp. than with the Australian Pseudochirops archeri, rendering Pseudochirops paraphyletic. New Guinean species belonging to Pseudochirops are monophyletic, as are New Guinean species belonging to Pseudochirulus. Molecular dates and ancestral reconstructions of geographic provenance combine to suggest that the ancestors of extant New Guinean Pseudochirops spp. and Pseudochirulus spp. dispersed from Australia to New Guinea ?12.1-6.5 Ma (Pseudochirops) and ?6.0-2.4 Ma (Pseudochirulus). Ancestral state reconstructions support the hypothesis that occupation of high elevations (>3000 m) is a derived feature that evolved on the terminal branch leading to Pseudochirops cupreus, and either evolved in the ancestor of Pseudochirulus forbesi, Pseudochirulus mayeri, and Pseudochirulus caroli, with subsequent loss in P. caroli, or evolved independently in P. mayeri and P. forbesi. Divergence times within the New Guinean Pseudochirops clade are generally coincident with the uplift of the central cordillera and other highlands. Diversification within New Guinean Pseudochirulus occurred in the Plio-Pleistocene after the establishment of the Central Range and other highlands. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10914-010-9129-7) contains supplementary material, which is available to authorized users.

SUBMITTER: Meredith RW 

PROVIDER: S-EPMC2987229 | BioStudies | 2010-01-01

SECONDARY ACCESSION(S): FJ624013

REPOSITORIES: biostudies

Similar Datasets

2020-01-01 | S-EPMC7067906 | BioStudies
2005-01-01 | S-EPMC1599775 | BioStudies
2018-01-01 | S-EPMC6300400 | BioStudies
2016-01-01 | S-EPMC4802422 | BioStudies
2017-01-01 | S-EPMC5965669 | BioStudies
2018-01-01 | S-EPMC5880236 | BioStudies
2015-01-01 | S-EPMC4438441 | BioStudies
1000-01-01 | S-EPMC5027606 | BioStudies
1000-01-01 | S-EPMC3024656 | BioStudies
2015-01-01 | S-EPMC4664400 | BioStudies