Unknown

Dataset Information

0

HiCNorm: removing biases in Hi-C data via Poisson regression.


ABSTRACT:

Summary

We propose a parametric model, HiCNorm, to remove systematic biases in the raw Hi-C contact maps, resulting in a simple, fast, yet accurate normalization procedure. Compared with the existing Hi-C normalization method developed by Yaffe and Tanay, HiCNorm has fewer parameters, runs >1000 times faster and achieves higher reproducibility.

Availability

Freely available on the web at: http://www.people.fas.harvard.edu/?junliu/HiCNorm/.

Contact

jliu@stat.harvard.edu

Supplementary information

Supplementary data are available at Bioinformatics online.

SUBMITTER: Hu M 

PROVIDER: S-EPMC3509491 | BioStudies | 2012-01-01

REPOSITORIES: biostudies

Similar Datasets

2019-01-01 | S-EPMC6853696 | BioStudies
2018-01-01 | S-EPMC5860379 | BioStudies
2020-01-01 | S-EPMC7648276 | BioStudies
2006-01-01 | S-EPMC1992440 | BioStudies
2019-01-01 | S-EPMC6736119 | BioStudies
2015-01-01 | S-EPMC4380031 | BioStudies
1000-01-01 | S-EPMC6127909 | BioStudies
2018-01-01 | S-EPMC6069782 | BioStudies
2020-01-01 | S-EPMC7590616 | BioStudies
2019-01-01 | S-EPMC6343296 | BioStudies