Dataset Information


PAH degradation and redox control in an electrode enhanced sediment cap.

ABSTRACT: Capping is typically used to control contaminant release from the underlying sediments. However, the presence of conventional sediment caps will often eliminate or slow natural degradation that might otherwise occur at the surface sediment. The objective of this study was to explore the potential of a novel reactive capping, an electrode enhanced cap for the remediation of PAH contaminated sediment. The study on electrode enhanced biodegradation of PAH in slurries showed that naphthalene concentration decreased from ~1000 ?g/L to ~50 ?g/L, and phenanthrene decreased from ~150 ?g/L to ~30 ?g/L in ElectroBioReactor within 4 days, and the copy numbers of PAH degrading genes increased by almost 2 orders of magnitude. In a cap microcosm, two carbon electrodes were emplaced within a sediment cap with an applied potential of 2 V. The anode was placed at the sediment-cap interface encouraging oxidizing conditions. Oxidation and Reduction Potential (ORP) profiles showed redox potential approximately 60-100 mV higher at the sediment-cap interface with the application of voltage than in controls. Vertical profiles of phenanthrene porewater concentration were obtained by PDMS-coated fiber, and results showed that phenanthrene at the depth of 0-0.5 cm below the anode was degraded to ~70% of the initial concentration within 10 weeks. PAH degrading genes showed an increase of approximately 1 order of magnitude at the same depth. The no power controls showed no degradation of PAH. These findings suggest that electrode enhanced capping can be used to control redox potential, provide microbial electron acceptor, and stimulate PAH degradation.


PROVIDER: S-EPMC3544081 | BioStudies | 2012-01-01

REPOSITORIES: biostudies

Similar Datasets

2015-01-01 | S-EPMC4500155 | BioStudies
2010-01-01 | S-EPMC2989605 | BioStudies
2001-01-01 | S-EPMC92925 | BioStudies
1000-01-01 | S-EPMC168130 | BioStudies
2017-01-01 | S-EPMC5581505 | BioStudies
2012-01-01 | S-EPMC3374338 | BioStudies
2019-01-01 | S-EPMC6527962 | BioStudies
2015-01-01 | S-EPMC4652016 | BioStudies
2018-01-01 | S-EPMC6258822 | BioStudies
2018-01-01 | S-EPMC5923776 | BioStudies