Dataset Information


Sprouty2, PTEN, and PP2A interact to regulate prostate cancer progression.

ABSTRACT: Concurrent activation of RAS/ERK and PI3K/AKT pathways is implicated in prostate cancer progression. The negative regulators of these pathways, including sprouty2 (SPRY2), protein phosphatase 2A (PP2A), and phosphatase and tensin homolog (PTEN), are commonly inactivated in prostate cancer. The molecular basis of cooperation between these genetic alterations is unknown. Here, we show that SPRY2 deficiency alone triggers activation of AKT and ERK, but this is insufficient to drive tumorigenesis. In addition to AKT and ERK activation, SPRY2 loss also activates a PP2A-dependent tumor suppressor checkpoint. Mechanistically, the PP2A-mediated growth arrest depends on GSK3? and is ultimately mediated by nuclear PTEN. In murine prostate cancer models, Pten haploinsufficiency synergized with Spry2 deficiency to drive tumorigenesis, including metastasis. Together, these results show that loss of Pten cooperates with Spry2 deficiency by bypassing a novel tumor suppressor checkpoint. Furthermore, loss of SPRY2 expression correlates strongly with loss of PTEN and/or PP2A subunits in human prostate cancer. This underlines the cooperation between SPRY2 deficiency and PTEN or PP2A inactivation in promoting tumorigenesis. Overall, we propose SPRY2, PTEN, and PP2A status as an important determinant of prostate cancer progression. Characterization of this trio may facilitate patient stratification for targeted therapies and chemopreventive interventions.


PROVIDER: S-EPMC3582117 | BioStudies | 2013-01-01T00:00:00Z

REPOSITORIES: biostudies

Similar Datasets

2012-01-01 | S-EPMC3523874 | BioStudies
2006-01-01 | S-EPMC1976603 | BioStudies
1000-01-01 | S-EPMC3494076 | BioStudies
2014-01-01 | S-EPMC4360961 | BioStudies
2015-01-01 | S-EPMC4476969 | BioStudies
2019-01-01 | S-EPMC6985068 | BioStudies
2015-01-01 | S-EPMC4636224 | BioStudies
1000-01-01 | S-EPMC3272625 | BioStudies
2010-01-01 | S-EPMC2920762 | BioStudies
2016-01-01 | S-EPMC4779598 | BioStudies