Dataset Information


Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress.

ABSTRACT: RATIONALE:Endothelial microRNA-126 (miR-126) modulates vascular development and angiogenesis. However, its role in the regulation of smooth muscle cell (SMC) function is unknown. OBJECTIVE:To elucidate the role of miR-126 secreted by endothelial cells (ECs) in regulating SMC turnover in vitro and in vivo, as well as the effects of shear stress on the regulation. METHODS AND RESULTS:Coculture of SMCs with ECs or treatment of SMCs with conditioned media from static EC monoculture (EC-CM) increased SMC miR-126 level and SMC turnover; these effects were abolished by inhibition of endothelial miR-126 and by the application of laminar shear stress to ECs. SMC miR-126 did not increase when treated with EC-CM from ECs subjected to inhibition of miR biogenesis, or with CM from sheared ECs. Depletion of extracellular/secreted vesicles in EC-CM did not affect the increase of SMC miR-126 by EC-CM. Biotinylated miR-126 or FLAG (DYKDDDDK epitope)-tagged Argonaute2 transfected into ECs was detected in the cocultured or EC-CM-treated SMCs, indicating a direct EC-to-SMC transmission of miR-126 and Argonaute2. Endothelial miR-126 represses forkhead box O3, B-cell lymphoma 2, and insulin receptor substrate 1 mRNAs in the cocultured SMCs, suggesting the functional roles of the transmitted miR-126. Systemic depletion of miR-126 in mice inhibited neointimal lesion formation of carotid arteries induced by cessation of blood flow. Administration of EC-CM or miR-126 mitigated the inhibitory effect. CONCLUSIONS:Endothelial miR-126 acts as a key intercellular mediator to increase SMC turnover, and its release is reduced by atheroprotective laminar shear stress.


PROVIDER: S-EPMC3772783 | BioStudies | 2013-01-01

REPOSITORIES: biostudies

Similar Datasets

1000-01-01 | S-EPMC5547597 | BioStudies
2009-01-01 | S-EPMC3772782 | BioStudies
2007-01-01 | S-EPMC1924488 | BioStudies
2019-01-01 | S-EPMC6465372 | BioStudies
2010-01-01 | S-EPMC2887340 | BioStudies
2018-02-14 | GSE96962 | GEO
1000-01-01 | S-EPMC5341127 | BioStudies
2017-01-01 | S-EPMC5514066 | BioStudies
2011-01-01 | S-EPMC3141048 | BioStudies
1000-01-01 | S-EPMC4394872 | BioStudies