Unknown

Dataset Information

0

Relaxin suppresses atrial fibrillation by reversing fibrosis and myocyte hypertrophy and increasing conduction velocity and sodium current in spontaneously hypertensive rat hearts.


ABSTRACT: Atrial fibrillation (AF) contributes significantly to morbidity and mortality in elderly and hypertensive patients and has been correlated to enhanced atrial fibrosis. Despite a lack of direct evidence that fibrosis causes AF, reversal of fibrosis is considered a plausible therapy.To evaluate the efficacy of the antifibrotic hormone relaxin (RLX) in suppressing AF in spontaneously hypertensive rats (SHR).Normotensive Wistar-Kyoto (WKY) and SHR were treated for 2 weeks with vehicle (WKY+V and SHR+V) or RLX (0.4 mg/kg per day, SHR+RLX) using implantable mini-pumps. Hearts were perfused, mapped optically to analyze action potential durations, intracellular Ca²? transients, and restitution kinetics, and tested for AF vulnerability. SHR hearts had slower conduction velocity (CV; P<0.01 versus WKY), steeper CV restitution kinetics, greater collagen deposition, higher levels of transcripts for transforming growth factor-?, metalloproteinase-2, metalloproteinase-9, collagen I/III, and reduced connexin 43 phosphorylation (P<0.05 versus WKY). Programmed stimulation triggered sustained AF in SHR (n=5/5) and SHR+V (n=4/4), but not in WKY (n=0/5) and SHR+RLX (n=1/8; P<0.01). RLX treatment reversed the transcripts for fibrosis, flattened CV restitution kinetics, reduced action potential duration at 90% recovery to baseline, increased CV (P<0.01), and reversed atrial hypertrophy (P<0.05). Independent of antifibrotic actions, RLX (0.1 µmol/L) increased Na? current density, INa (?2-fold in 48 hours) in human cardiomyocytes derived from inducible pluripotent stem cells (n=18/18; P<0.01).RLX treatment suppressed AF in SHR hearts by increasing CV from a combination of reversal of fibrosis and hypertrophy and by increasing INa. The study provides compelling evidence that RLX may provide a novel therapy to manage AF in humans by reversing fibrosis and hypertrophy and by modulating cardiac ionic currents.

SUBMITTER: Parikh A 

PROVIDER: S-EPMC3774019 | BioStudies | 2013-01-01

REPOSITORIES: biostudies

Similar Datasets

2013-01-01 | S-EPMC3754972 | BioStudies
1000-01-01 | S-EPMC6292173 | BioStudies
2016-01-01 | S-EPMC5093228 | BioStudies
2001-01-01 | S-EPMC1572975 | BioStudies
2020-01-01 | S-EPMC7479650 | BioStudies
2013-01-01 | S-EPMC4043399 | BioStudies
2018-01-01 | S-EPMC5741475 | BioStudies
1000-01-01 | S-EPMC185230 | BioStudies
2020-01-01 | S-EPMC7608641 | BioStudies
1000-01-01 | S-EPMC5322393 | BioStudies