Unknown

Dataset Information

0

Production of bioactive soluble interleukin-15 in complex with interleukin-15 receptor alpha from a conditionally-replicating oncolytic HSV-1.


ABSTRACT: Oncolytic type-1 herpes simplex viruses (oHSVs) lacking the ?134.5 neurovirulence gene are being evaluated for treatment of a variety of malignancies. oHSVs replicate within and directly kill permissive cancer cells. To augment their anti-tumor activity, oHSVs have been engineered to express immunostimulatory molecules, including cytokines, to elicit tumor-specific immune responses. Interleukin-15 (IL-15) holds potential as an immunotherapeutic cytokine because it has been demonstrated to promote both natural killer (NK) cell-mediated and CD8(+) T cell-mediated cytotoxicity against cancer cells. The purpose of these studies was to engineer an oHSV producing bioactive IL-15. Two oHSVs were constructed encoding murine (m)IL-15 alone (J100) or with the mIL-15 receptor ? (mIL-15R?, J100D) to determine whether co-expression of these proteins is required for production of bioactive mIL-15 from oHSV. The following were demonstrated: i) both oHSVs retain replication competence and cytotoxicity in permissive tumor cell lines. ii) Enhanced production of mIL-15 was detected in cell lysates of neuro-2a cells following J100D infection as compared to J100 infection, suggesting that mIL-15R? improved mIL-15 production. iii) Soluble mIL-15 in complex with mIL-15R? was detected in supernates from J100D-infected, but not J100-infected, neuro-2a, GL261, and CT-2A cells. These cell lines vary in permissiveness to oHSV replication and cytotoxicity, demonstrating soluble mIL-15/IL-15R? complex production from J100D was independent of direct oHSV effects. iv) The soluble mIL-15/IL-15R? complex produced by J100D was bioactive, stimulating NK cells to proliferate and reduce the viability of syngeneic GL261 and CT-2A cells. v) J100 and J100D were aneurovirulent inasmuch as no neuropathologic effects were documented following direct inoculation into brains of CBA/J mice at up to 1x10(7) plaque forming units. The production of mIL-15/mIL-15R? from multiple tumor lines, as well as the lack of neurovirulence, renders J100D suitable for investigating the combined effects of oHSV and mIL-15/IL-15R? in various cancer models.

SUBMITTER: Gaston DC 

PROVIDER: S-EPMC3842420 | BioStudies | 2013-01-01

REPOSITORIES: biostudies

Similar Datasets

2014-01-01 | S-EPMC5745010 | BioStudies
2013-01-01 | S-EPMC3810211 | BioStudies
1000-01-01 | S-EPMC3689953 | BioStudies
2019-01-01 | S-EPMC6939657 | BioStudies
2016-01-01 | S-EPMC7537637 | BioStudies
2016-01-01 | S-EPMC5048472 | BioStudies
2016-01-01 | S-EPMC4867290 | BioStudies
2012-01-01 | S-EPMC3504748 | BioStudies
1000-01-01 | S-EPMC4060713 | BioStudies
1000-01-01 | S-EPMC2912364 | BioStudies