Dataset Information


GITR pathway activation abrogates tumor immune suppression through loss of regulatory T cell lineage stability.

ABSTRACT: Ligation of GITR (glucocorticoid-induced tumor necrosis factor (TNF) receptor-related gene, or TNFRSF18) by agonist antibody has recently entered into early phase clinical trials for the treatment of advanced malignancies. Although the ability of GITR modulation to induce tumor regression is well-documented in preclinical studies, the underlying mechanisms of action, particularly its effects on CD4(+)foxp3(+) regulatory T cells (Treg), have not been fully elucidated. We have previously demonstrated that GITR ligation in vivo by agonist antibody DTA-1 causes a >50% reduction of intra-tumor Treg with down modulation of Foxp3 expression. Here we show that the loss of Foxp3 is tumor-dependent. Adoptively-transferred Foxp3(+)Treg from tumor-bearing animals lose Foxp3 expression in the host when treated with DTA-1, whereas Treg from naïve mice maintain Foxp3 expression. GITR ligation also alters the expression of various transcription factors and cytokines important for Treg function. Complete Foxp3 loss in intra-tumor Treg correlates with a dramatic decrease in Helios expression and is associated with the upregulation of transcription factors T-Bet and Eomes. Changes in Helios correspond with a reduction in IL-10 and an increase in IFN? expression in DTA-1-treated Treg. Together, these data show that GITR agonist antibody alters Treg lineage stability inducing an inflammatory effector T cell phenotype. The resultant loss of lineage stability causes Treg to lose their intra-tumor immune suppressive function, making the tumor susceptible to killing by tumor-specific effector CD8(+) T cells.


PROVIDER: S-EPMC3885345 | BioStudies | 2013-01-01

REPOSITORIES: biostudies

Similar Datasets

2010-01-01 | S-EPMC2862699 | BioStudies
2012-01-01 | S-EPMC3316700 | BioStudies
1000-01-01 | S-EPMC5688217 | BioStudies
2019-01-01 | S-EPMC6402968 | BioStudies
1000-01-01 | S-EPMC3975257 | BioStudies
2015-01-01 | S-EPMC4610024 | BioStudies
2019-01-01 | S-EPMC6619339 | BioStudies
2013-01-01 | S-EPMC3891045 | BioStudies
1000-01-01 | S-EPMC3909995 | BioStudies
1000-01-01 | S-EPMC3612859 | BioStudies