Unknown

Dataset Information

0

Thin filament incorporation of an engineered cardiac troponin C variant (L48Q) enhances contractility in intact cardiomyocytes from healthy and infarcted hearts.


ABSTRACT: Many current pharmaceutical therapies for systolic heart failure target intracellular [Ca(2+)] ([Ca(2+)]i) metabolism, or cardiac troponin C (cTnC) on thin filaments, and can have significant side-effects, including arrhythmias or adverse effects on diastolic function. In this study, we tested the feasibility of directly increasing the Ca(2+) binding properties of cTnC to enhance contraction independent of [Ca(2+)]i in intact cardiomyocytes from healthy and myocardial infarcted (MI) hearts. Specifically, cardiac thin filament activation was enhanced through adenovirus-mediated over-expression of a cardiac troponin C (cTnC) variant designed to have increased Ca(2+) binding affinity conferred by single amino acid substitution (L48Q). In skinned cardiac trabeculae and myofibrils we and others have shown that substitution of L48Q cTnC for native cTnC increases Ca(2+) sensitivity of force and the maximal rate of force development. Here we introduced L48Q cTnC into myofilaments of intact cardiomyocytes via adeno-viral transduction to deliver cDNA for the mutant or wild type (WT) cTnC protein. Using video-microscopy to monitor cell contraction, relaxation, and intracellular Ca(2+) transients (Fura-2), we report that incorporation of L48Q cTnC significantly increased contractility of cardiomyocytes from healthy and MI hearts without adversely affecting Ca(2+) transient properties or relaxation. The improvements in contractility from L48Q cTnC expression are likely the result of enhanced contractile efficiency, as intracellular Ca(2+) transient amplitudes were not affected. Expression and incorporation of L48Q cTnC into myofilaments was confirmed by Western blot analysis of myofibrils from transduced cardiomyocytes, which indicated replacement of 18±2% of native cTnC with L48Q cTnC. These experiments demonstrate the feasibility of directly targeting cardiac thin filament proteins to enhance cardiomyocyte contractility that is impaired following MI.

SUBMITTER: Feest ER 

PROVIDER: S-EPMC4082830 | BioStudies | 2014-01-01

REPOSITORIES: biostudies

Similar Datasets

2011-01-01 | S-EPMC3018540 | BioStudies
1000-01-01 | S-EPMC4770086 | BioStudies
2012-01-01 | S-EPMC3437384 | BioStudies
2013-01-01 | S-EPMC3832503 | BioStudies
2013-01-01 | S-EPMC3616153 | BioStudies
2011-01-01 | S-EPMC3139448 | BioStudies
1000-01-01 | S-EPMC4156663 | BioStudies
2020-01-01 | S-EPMC7605524 | BioStudies
2011-01-01 | S-EPMC3165030 | BioStudies
2012-01-01 | S-EPMC3442518 | BioStudies