Dataset Information


Structure-reactivity relationships of zwitterionic 1,3-diaza-Claisen rearrangements.

ABSTRACT: Bridged bicyclic tertiary allylic amines aza-norbornene 1 and isoquinuclidene 2 add to isocyanates, isothiocyanates, and in situ-generated carbodiimides to form zwitterionic intermediates that undergo 1,3-diaza-Claisen rearrangements to afford highly substituted ureas, thioureas, and guanidines, respectively. Aza-norbornene 1 is significantly more reactive toward 1,3-diaza-Claisen rearrangements than isoquinuclidene 2. This reactivity difference is most likely due to the inherent ring strain in the aza-bicyclo[2.2.1]heptene ring system of aza-norbornene 1. The most apparent reactivity trend of the heterocumulenes is that the most electron-deficient heterocumulenes are more reactive toward 1,3-diaza-Claisen rearrangements. The introduction of a new stereocenter ?- to the nucleophilic nitrogen in aza-norbornene 1 and isoquinuclidine 2 decreases the reactivity toward 1,3-diaza-Claisen rearrangements, while the exodiastereomers 3b and 4b are less reactive than the corresponding endodiastereomers 3a and 4a. Isocyanates that bear an electron-withdrawing group react with allylic amines 1-3b to afford mixtures of ureas and isoureas; however, with excess isocyanate and heat, thermodynamic equilibration is possible affording ureas. Inspired by this observation, a one-pot reaction of isocyanates with amines 1, 2, and 3b followed by BF3·OEt2-catalyzed isomerization of the urea/isourea mixture was developed that affords the corresponding ureas in excellent yields.

PROVIDER: S-EPMC4356197 | BioStudies |

REPOSITORIES: biostudies

Similar Datasets

| S-EPMC3120114 | BioStudies
2010-01-01 | S-EPMC2862050 | BioStudies
2012-01-01 | S-EPMC3767350 | BioStudies
| S-EPMC3645925 | BioStudies
| S-EPMC3321125 | BioStudies
1000-01-01 | S-EPMC6225218 | BioStudies
1000-01-01 | S-EPMC5954617 | BioStudies
| S-EPMC3732456 | BioStudies
2018-01-01 | S-EPMC6276106 | BioStudies
| S-EPMC7408244 | BioStudies