Dataset Information


Chemistry and Biology of Self-Cleaving Ribozymes.

ABSTRACT: Self-cleaving ribozymes were discovered 30 years ago, but their biological distribution and catalytic mechanisms are only beginning to be defined. Each ribozyme family is defined by a distinct structure, with unique active sites accelerating the same transesterification reaction across the families. Biochemical studies show that general acid-base catalysis is the most common mechanism of self-cleavage, but metal ions and metabolites can be used as cofactors. Ribozymes have been discovered in highly diverse genomic contexts throughout nature, from viroids to vertebrates. Their biological roles include self-scission during rolling-circle replication of RNA genomes, co-transcriptional processing of retrotransposons, and metabolite-dependent gene expression regulation in bacteria. Other examples, including highly conserved mammalian ribozymes, suggest that many new biological roles are yet to be discovered.


PROVIDER: S-EPMC4630146 | BioStudies | 2015-01-01

REPOSITORIES: biostudies

Similar Datasets

1000-01-01 | S-EPMC4513843 | BioStudies
2011-01-01 | S-EPMC3308841 | BioStudies
2018-01-01 | S-EPMC6101554 | BioStudies
2017-01-01 | S-EPMC6154101 | BioStudies
2019-01-01 | S-EPMC6412130 | BioStudies
2015-01-01 | S-EPMC4509812 | BioStudies
2011-01-01 | S-EPMC3088659 | BioStudies
2017-01-01 | S-EPMC7955703 | BioStudies
2009-01-01 | S-EPMC3159031 | BioStudies
2020-01-01 | S-EPMC7192461 | BioStudies