Dataset Information


Cholesterol-Dependent Conformational Exchange of the C-Terminal Domain of the Influenza A M2 Protein.

ABSTRACT: The C-terminal amphipathic helix of the influenza A M2 protein plays a critical cholesterol-dependent role in viral budding. To provide atomic-level detail on the impact cholesterol has on the conformation of M2 protein, we spin-labeled sites right before and within the C-terminal amphipathic helix of the M2 protein. We studied the spin-labeled M2 proteins in membranes both with and without cholesterol. We used a multipronged site-directed spin-label electron paramagnetic resonance (SDSL-EPR) approach and collected data on line shapes, relaxation rates, accessibility of sites to the membrane, and distances between symmetry-related sites within the tetrameric protein. We demonstrate that the C-terminal amphipathic helix of M2 populates at least two conformations in POPC/POPG 4:1 bilayers. Furthermore, we show that the conformational state that becomes more populated in the presence of cholesterol is less dynamic, less membrane buried, and more tightly packed than the other state. Cholesterol-dependent changes in M2 could be attributed to the changes cholesterol induces in bilayer properties and/or direct binding of cholesterol to the protein. We propose a model consistent with all of our experimental data that suggests that the predominant conformation we observe in the presence of cholesterol is relevant for the understanding of viral budding.

PROVIDER: S-EPMC4734095 | BioStudies |

REPOSITORIES: biostudies

Similar Datasets

| S-EPMC6112238 | BioStudies
| S-EPMC4816700 | BioStudies
| S-EPMC3145023 | BioStudies
| S-EPMC3059587 | BioStudies
| S-EPMC3575861 | BioStudies
| S-EPMC5724280 | BioStudies
| S-EPMC3831677 | BioStudies
| S-EPMC3283775 | BioStudies
| S-EPMC7515559 | BioStudies
| S-EPMC6625909 | BioStudies