Unknown

Dataset Information

0

Residual force enhancement following shortening is speed-dependent.


ABSTRACT: The steady-state isometric force following active muscle shortening or lengthening is smaller (force depression; FD) or greater (residual force enhancement; RFE) than a purely isometric contraction at the corresponding length. The mechanisms underlying these phenomena are not explained within the context of the cross-bridge theory and are rarely studied in concert. Previous studies have shown RFE to be speed-independent. In the present study, we investigated if RFE preceded by active shortening is time-dependent by electrically evoking RFE in the human adductor pollicis muscle. The results shown that a slow stretch following FD fully re-established RFE compared to higher speeds of stretch. The mechanism(s) responsible for the recovery of RFE following a preceding shortening contraction (FD) might be associated with the recovery of cross-bridge based force and/or the re-engagement of a passive structural element (titin). Voluntary interaction with one's environment involves highly coordinated shortening and lengthening muscle contractions. Therefore comprehending these history-dependent muscle properties in the context of movement control is paramount in understanding the behavior of in vivo motor control.

PROVIDER: S-EPMC4751464 | BioStudies | 2016-01-01

REPOSITORIES: biostudies

Similar Datasets

| S-EPMC6459387 | BioStudies
1000-01-01 | S-EPMC6189239 | BioStudies
2018-01-01 | S-EPMC6078065 | BioStudies
2019-01-01 | S-EPMC6545074 | BioStudies
2017-01-01 | S-EPMC5401888 | BioStudies
2016-01-01 | S-EPMC4821266 | BioStudies
2020-01-01 | S-EPMC7674334 | BioStudies
2020-01-01 | S-EPMC7399218 | BioStudies
2017-01-01 | S-EPMC5651592 | BioStudies
2017-01-01 | S-EPMC5634630 | BioStudies