Dataset Information


Response of Chloroplast NAD(P)H Dehydrogenase-Mediated Cyclic Electron Flow to a Shortage or Lack in Ferredoxin-Quinone Oxidoreductase-Dependent Pathway in Rice Following Short-Term Heat Stress.

ABSTRACT: Cyclic electron flow (CEF) around photosystem I (PSI) can protect photosynthetic electron carriers under conditions of stromal over-reduction. The goal of the research reported in this paper was to investigate the responses of both PSI and photosystem II (PSII) to a short-term heat stress in two rice lines with different capacities of cyclic electron transfer, i.e., Q4149 with a high capacity (hcef) and C4023 with a low capacity (lcef). The absorbance change at 820 nm (?A820) was used here to assess the charge separation in the PSI reaction center (P700). The results obtained show that short-term heat stress abolishes the ferredoxin-quinone oxidoreductase (FQR)-dependent CEF in rice and accelerates the initial rate of P700 (+) re-reduction. The P700 (+) amplitude was slightly increased at a moderate heat-stress (35°C) because of a partial restriction of FQR but it was decreased following high heat-stress (42°C). Assessment of PSI and PSII activities shows that PSI is more susceptible to heat stress than PSII. Under high temperature, FQR-dependent CEF was completely removed and NDH-dependent CEF was up-regulated and strengthened to a higher extent in C4023 than in Q4149. Specifically, under normal growth temperature, hcef (Q4149) was characterized by higher FQR- and chloroplast NAD(P)H dehydrogenase (NDH)-dependent CEF rates than lcef (C4023). Following thermal stress, the activation of NDH-pathway was 130 and 10% for C4023 and Q4149, respectively. Thus, the NDH-dependent CEF may constitute the second layer of plant protection and defense against heat stress after the main route, i.e., FQR-dependent CEF, reaches its capacity. We discuss the possibility that under high heat stress, the NDH pathway serves as a safety valve to dissipate excess energy by cyclic photophosphorylation and overcome the stroma over-reduction following inhibition of CO2 assimilation and any shortage or lack in the FQR pathway. The potential role of the NDH-dependent pathway during the evolution of C4 photosynthesis is briefly discussed.

PROVIDER: S-EPMC4811871 | BioStudies | 2016-01-01T00:00:00Z

REPOSITORIES: biostudies

Similar Datasets

| S-EPMC1283823 | BioStudies
2016-01-01 | S-EPMC4735858 | BioStudies
| S-EPMC7733926 | BioStudies
| S-EPMC7270563 | BioStudies
| S-EPMC4623694 | BioStudies
| S-EPMC5776120 | BioStudies
| S-EPMC3156182 | BioStudies
| S-EPMC6539619 | BioStudies
| S-EPMC6992706 | BioStudies
2016-01-01 | S-EPMC4758081 | BioStudies