Dataset Information


High Throughput Sequencing to Detect Differences in Methanotrophic Methylococcaceae and Methylocystaceae in Surface Peat, Forest Soil, and Sphagnum Moss in Cranesville Swamp Preserve, West Virginia, USA.

ABSTRACT: Northern temperate forest soils and Sphagnum-dominated peatlands are a major source and sink of methane. In these ecosystems, methane is mainly oxidized by aerobic methanotrophic bacteria, which are typically found in aerated forest soils, surface peat, and Sphagnum moss. We contrasted methanotrophic bacterial diversity and abundances from the (i) organic horizon of forest soil; (ii) surface peat; and (iii) submerged Sphagnum moss from Cranesville Swamp Preserve, West Virginia, using multiplex sequencing of bacterial 16S rRNA (V3 region) gene amplicons. From ~1 million reads, >50,000 unique OTUs (Operational Taxonomic Units), 29 and 34 unique sequences were detected in the Methylococcaceae and Methylocystaceae, respectively, and 24 potential methanotrophs in the Beijerinckiaceae were also identified. Methylacidiphilum-like methanotrophs were not detected. Proteobacterial methanotrophic bacteria constitute <2% of microbiota in these environments, with the Methylocystaceae one to two orders of magnitude more abundant than the Methylococcaceae in all environments sampled. The Methylococcaceae are also less diverse in forest soil compared to the other two habitats. Nonmetric multidimensional scaling analyses indicated that the majority of methanotrophs from the Methylococcaceae and Methylocystaceae tend to occur in one habitat only (peat or Sphagnum moss) or co-occurred in both Sphagnum moss and peat. This study provides insights into the structure of methanotrophic communities in relationship to habitat type, and suggests that peat and Sphagnum moss can influence methanotroph community structure and biogeography.


PROVIDER: S-EPMC5023241 | BioStudies | 2015-01-01

REPOSITORIES: biostudies

Similar Datasets

2001-01-01 | S-EPMC92887 | BioStudies
2011-01-01 | S-EPMC3165258 | BioStudies
2018-01-01 | S-EPMC5772240 | BioStudies
2013-01-01 | S-EPMC3579938 | BioStudies
2007-01-01 | S-EPMC1950977 | BioStudies
2001-01-01 | S-EPMC93225 | BioStudies
1000-01-01 | S-EPMC1392950 | BioStudies
1000-01-01 | S-EPMC5936483 | BioStudies
2003-01-01 | S-EPMC154495 | BioStudies
2018-01-01 | S-EPMC5808792 | BioStudies