Unknown

Dataset Information

0

Exoplanet orbital eccentricities derived from LAMOST-Kepler analysis.


ABSTRACT: The nearly circular (mean eccentricity [Formula: see text]) and coplanar (mean mutual inclination [Formula: see text]) orbits of the solar system planets motivated Kant and Laplace to hypothesize that planets are formed in disks, which has developed into the widely accepted theory of planet formation. The first several hundred extrasolar planets (mostly Jovian) discovered using the radial velocity (RV) technique are commonly on eccentric orbits ([Formula: see text]). This raises a fundamental question: Are the solar system and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), whereas the other half are multiple transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with [Formula: see text] 0.3, whereas the multiples are on nearly circular [Formula: see text] and coplanar [Formula: see text] degree) orbits similar to those of the solar system planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation [[Formula: see text](1-2)[Formula: see text]] between mean eccentricities and mutual inclinations. The prevalence of circular orbits and the common relation may imply that the solar system is not so atypical in the galaxy after all.

SUBMITTER: Xie JW 

PROVIDER: S-EPMC5068330 | BioStudies | 2016-01-01

REPOSITORIES: biostudies

Similar Datasets

1000-01-01 | S-EPMC5777037 | BioStudies
2014-01-01 | S-EPMC4156743 | BioStudies
2014-01-01 | S-EPMC4156715 | BioStudies
1000-01-01 | S-EPMC3845182 | BioStudies
2020-01-01 | S-EPMC7211933 | BioStudies
2018-01-01 | S-EPMC6170104 | BioStudies
2017-01-01 | S-EPMC5582381 | BioStudies
2020-01-01 | S-EPMC7368282 | BioStudies
2014-01-01 | S-EPMC4156769 | BioStudies
2020-01-01 | S-EPMC7486411 | BioStudies