Dataset Information


Novel TDP2-ubiquitin interactions and their importance for the repair of topoisomerase II-mediated DNA damage.

ABSTRACT: Tyrosyl DNA phosphodiesterase 2 (TDP2) is a multifunctional protein implicated in DNA repair, signal transduction and transcriptional regulation. In its DNA repair role, TDP2 safeguards genome integrity by hydrolyzing 5'-tyrosyl DNA adducts formed by abortive topoisomerase II (Top2) cleavage complexes to allow error-free repair of DNA double-strand breaks, thereby conferring cellular resistance against Top2 poisons. TDP2 consists of a C-terminal catalytic domain responsible for its phosphodiesterase activity, and a functionally uncharacterized N-terminal region. Here, we demonstrate that this N-terminal region contains a ubiquitin (Ub)-associated (UBA) domain capable of binding multiple forms of Ub with distinct modes of interactions and preference for either K48- or K63-linked polyUbs over monoUb. The structure of TDP2 UBA bound to monoUb shows a canonical mode of UBA-Ub interaction. However, the absence of the highly conserved MGF motif and the presence of a fourth ?-helix make TDP2 UBA distinct from other known UBAs. Mutations in the TDP2 UBA-Ub binding interface do not affect nuclear import of TDP2, but severely compromise its ability to repair Top2-mediated DNA damage, thus establishing the importance of the TDP2 UBA-Ub interaction in DNA repair. The differential binding to multiple Ub forms could be important for responding to DNA damage signals under different contexts or to support the multi-functionality of TDP2.

PROVIDER: S-EPMC5137425 | BioStudies |

REPOSITORIES: biostudies

Similar Datasets

| S-EPMC7293035 | BioStudies
| S-EPMC4872741 | BioStudies
| S-EPMC5623066 | BioStudies
| S-EPMC3458563 | BioStudies
| S-EPMC3592926 | BioStudies
| S-EPMC4925160 | BioStudies
| S-EPMC3012998 | BioStudies
| S-EPMC6624171 | BioStudies
| S-EPMC4140274 | BioStudies
| S-EPMC7497232 | BioStudies