Unknown

Dataset Information

0

Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion.


ABSTRACT: An equiatomic FeCoCrNi high-entropy alloy with a face-centered cubic structure was fabricated by a powder metallurgy route, and then processed by high-pressure torsion. Detailed microscopy investigations revealed that grain refinement from coarse grains to nanocrystalline grains occurred mainly via concurrent nanoband (NB) subdivision and deformation twinning. NB-NB, twin-NB and twin-twin interactions contributed to the deformation process. The twin-twin interactions resulted in severe lattice distortion and accumulation of high densities of dislocations in the interaction areas. With increasing strain, NB subdivision and interactions between primary twins and inclined secondary stacking faults (SFs)/nanotwins occurred. Secondary nanotwins divided the primary twins into many equiaxed parts, leading to further grain refinement. The interactions between secondary SFs/nanotwins associated with the presence of Shockley partials and primary twins also transformed the primary twin boundaries into incoherent high-angle grain boundaries.

SUBMITTER: Wu W 

PROVIDER: S-EPMC5399454 | BioStudies | 2017-01-01

REPOSITORIES: biostudies

Similar Datasets

2020-01-01 | S-EPMC7535064 | BioStudies
1000-01-01 | S-EPMC5622094 | BioStudies
2018-01-01 | S-EPMC6085376 | BioStudies
2018-01-01 | S-EPMC5962533 | BioStudies
1000-01-01 | S-EPMC4354052 | BioStudies
1000-01-01 | S-EPMC4804168 | BioStudies
1000-01-01 | S-EPMC5494191 | BioStudies
2015-01-01 | S-EPMC4652229 | BioStudies
2020-01-01 | S-EPMC7308395 | BioStudies
1000-01-01 | S-EPMC6213516 | BioStudies