Dataset Information


3D culture increases pluripotent gene expression in mesenchymal stem cells through relaxation of cytoskeleton tension.

ABSTRACT: Three-dimensional (3D) culture has been shown to improve pluripotent gene expression in mesenchymal stem cells (MSCs), but the underlining mechanisms were poorly understood. Here, we found that the relaxation of cytoskeleton tension of MSCs in 3D culture was critically associated with the expressional up-regulation of Nanog. Cultured in spheroids, MSCs showed decreased integrin-based cell-matrix adhesion but increased cadherin-based cell-cell interaction. Different from that in 2D culture, where MSCs exhibited branched and multiple-directed F-actin stress bundles at the cell edge and strengthened stress fibres transversing the cell body, MSCs cultured in spheroids showed compact cell body, relaxed cytoskeleton tension with very thin cortical actin filament outlining the cell, and increased expression of Nanog along with reduced levels of Suv39h1 (H3K9 methyltransferase) and H3K9me3. Notably, pharmaceutical inhibition of actin polymerization with cytochalasin D or silencing Suv39h1 expression with siRNA in 2D-cultured MSCs elevated the expression of Nanog via H3K9 demethylation. Thus, our data suggest that 3D culture increases the expression of Nanog through the relaxation of actin cytoskeleton, which mediates reduced Suv39h1 and H3K9me3 levels.


PROVIDER: S-EPMC5431137 | BioStudies | 2017-01-01T00:00:00Z

REPOSITORIES: biostudies

Similar Datasets

2013-01-01 | S-EPMC7657232 | BioStudies
1000-01-01 | S-EPMC4078803 | BioStudies
2020-01-01 | S-EPMC7469483 | BioStudies
2015-01-01 | S-EPMC4614257 | BioStudies
2014-01-01 | S-EPMC4054298 | BioStudies
2018-01-01 | S-EPMC6286508 | BioStudies
2017-01-01 | S-EPMC5467120 | BioStudies
2020-01-01 | S-EPMC7728597 | BioStudies
1000-01-01 | S-EPMC5161741 | BioStudies
1000-01-01 | S-EPMC4153622 | BioStudies