Unknown

Dataset Information

0

Fabrication of Silicon Nanobelts and Nanopillars by Soft Lithography for Hydrophobic and Hydrophilic Photonic Surfaces.


ABSTRACT: Soft lithography allows for the simple and low-cost fabrication of nanopatterns with different shapes and sizes over large areas. However, the resolution and the aspect ratio of the nanostructures fabricated by soft lithography are limited by the depth and the physical properties of the stamp. In this work, silicon nanobelts and nanostructures were achieved by combining soft nanolithography patterning with optimized reactive ion etching (RIE) in silicon. Using polymethylmethacrylate (PMMA) nanopatterned layers with thicknesses ranging between 14 and 50 nm, we obtained silicon nanobelts in areas of square centimeters with aspect ratios up to ~1.6 and linewidths of 225 nm. The soft lithographic process was assisted by a thin film of SiOx (less than 15 nm) used as a hard mask and RIE. This simple patterning method was also used to fabricate 2D nanostructures (nanopillars) with aspect ratios of ~2.7 and diameters of ~200 nm. We demonstrate that large areas patterned with silicon nanobelts exhibit a high reflectivity peak in the ultraviolet C (UVC) spectral region (280 nm) where some aminoacids and peptides have a strong absorption. We also demonstrated how to tailor the aspect ratio and the wettability of these photonic surfaces (contact angles ranging from 8.1 to 96.2°) by changing the RIE power applied during the fabrication process.

SUBMITTER: Baquedano E 

PROVIDER: S-EPMC5449990 | BioStudies | 2017-01-01T00:00:00Z

REPOSITORIES: biostudies

Similar Datasets

2014-01-01 | S-EPMC4115234 | BioStudies
1000-01-01 | S-EPMC5544770 | BioStudies
2012-01-01 | S-EPMC4120064 | BioStudies
2015-01-01 | S-EPMC4295112 | BioStudies
2013-01-01 | S-EPMC3634306 | BioStudies
1000-01-01 | S-EPMC3552822 | BioStudies
1000-01-01 | S-EPMC6071703 | BioStudies
2017-01-01 | S-EPMC6641768 | BioStudies
1000-01-01 | S-EPMC5565438 | BioStudies
1000-01-01 | S-EPMC5489266 | BioStudies