Dataset Information


Predicting human protein subcellular localization by heterogeneous and comprehensive approaches.

ABSTRACT: Drug development and investigation of protein function both require an understanding of protein subcellular localization. We developed a system, REALoc, that can predict the subcellular localization of singleplex and multiplex proteins in humans. This system, based on comprehensive strategy, consists of two heterogeneous systematic frameworks that integrate one-to-one and many-to-many machine learning methods and use sequence-based features, including amino acid composition, surface accessibility, weighted sign aa index, and sequence similarity profile, as well as gene ontology function-based features. REALoc can be used to predict localization to six subcellular compartments (cell membrane, cytoplasm, endoplasmic reticulum/Golgi, mitochondrion, nucleus, and extracellular). REALoc yielded a 75.3% absolute true success rate during five-fold cross-validation and a 57.1% absolute true success rate in an independent database test, which was >10% higher than six other prediction systems. Lastly, we analyzed the effects of Vote and GANN models on singleplex and multiplex localization prediction efficacy. REALoc is freely available at http://predictor.nchu.edu.tw/REALoc.


PROVIDER: S-EPMC5489166 | BioStudies | 2017-01-01

REPOSITORIES: biostudies

Similar Datasets

2011-01-01 | S-EPMC3068162 | BioStudies
2012-01-01 | S-EPMC3358325 | BioStudies
2011-01-01 | S-EPMC3117797 | BioStudies
2015-01-01 | S-EPMC4425527 | BioStudies
1000-01-01 | S-EPMC3295090 | BioStudies
2012-01-01 | S-EPMC3314587 | BioStudies
2017-01-01 | S-EPMC5490960 | BioStudies
2012-01-01 | S-EPMC3543197 | BioStudies
2011-01-01 | S-EPMC7126442 | BioStudies
2012-01-01 | S-EPMC3517769 | BioStudies