Dataset Information


VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia.

ABSTRACT: Vascular endothelial cells (ECs) at arterial branches and curvatures experience disturbed blood flow and induce a quiescent-to-activated phenotypic transition of the adjacent smooth muscle cells (SMCs) and a subsequent smooth muscle hyperplasia. However, the mechanism underlying the flow pattern-specific initiation of EC-to-SMC signaling remains elusive. Our previous study demonstrated that endothelial microRNA-126-3p (miR-126-3p) acts as a key intercellular molecule to increase turnover of the recipient SMCs, and that its release is reduced by atheroprotective laminar shear (12 dynes/cm2) to ECs. Here we provide evidence that atherogenic oscillatory shear (0.5 ± 4 dynes/cm2), but not atheroprotective pulsatile shear (12 ± 4 dynes/cm2), increases the endothelial secretion of nonmembrane-bound miR-126-3p and other microRNAs (miRNAs) via the activation of SNAREs, vesicle-associated membrane protein 3 (VAMP3) and synaptosomal-associated protein 23 (SNAP23). Knockdown of VAMP3 and SNAP23 reduces endothelial secretion of miR-126-3p and miR-200a-3p, as well as the proliferation, migration, and suppression of contractile markers in SMCs caused by EC-coculture. Pharmacological intervention of mammalian target of rapamycin complex 1 in ECs blocks endothelial secretion and EC-to-SMC transfer of miR-126-3p through transcriptional inhibition of VAMP3 and SNAP23. Systemic inhibition of VAMP3 and SNAP23 by rapamycin or periadventitial application of the endocytosis inhibitor dynasore ameliorates the disturbed flow-induced neointimal formation, whereas intraluminal overexpression of SNAP23 aggravates it. Our findings demonstrate the flow-pattern-specificity of SNARE activation and its contribution to the miRNA-mediated EC-SMC communication.


PROVIDER: S-EPMC5547597 | BioStudies | 2017-01-01T00:00:00Z

REPOSITORIES: biostudies

Similar Datasets

2013-01-01 | S-EPMC3772783 | BioStudies
2020-01-01 | S-EPMC7674309 | BioStudies
2007-01-01 | S-EPMC1924488 | BioStudies
2014-01-01 | S-EPMC4398028 | BioStudies
2019-01-01 | S-EPMC6465372 | BioStudies
2010-01-01 | S-EPMC2887340 | BioStudies
2016-01-01 | S-EPMC4816502 | BioStudies
2017-01-01 | S-EPMC5514066 | BioStudies
2018-02-14 | GSE96962 | GEO
1000-01-01 | S-EPMC4394872 | BioStudies