Dataset Information


Effect of Electrical Contact Resistance on Measurement of Thermal Conductivity and Wiedemann-Franz Law for Individual Metallic Nanowires.

ABSTRACT: The electrical and thermal properties of metallic nanostructures have attracted considerable fundamental and technological interests. Recent studies confirmed a dramatic decrease in the electrical and thermal conductivities when the dimension is comparable or even smaller than the electron mean free path. However, the verification of the Wiedemann-Franz law in these nanostructures remains hotly debated. The Lorenz number obtained from the two-probe measurement is found to be much larger than that from the four-probe measurement. Here, we reported the electrical and thermal properties of the individual silver nanowires measured by the two-probe and four-probe configurations. The measured electrical contact resistance is found to be nearly temperature-independent, indicating a ballistic-dominant electronic transport at the contacts. When the effect of thermal contact resistance is diminished, the Lorenz number measured by the four-probe configuration is comparable to the Sommerfeld value, verifying that the Wiedemann-Franz law holds in the monocrystalline-like silver nanowire. Comparatively, the derived electrical conductivity becomes smaller and the thermal conductivity becomes larger in the two-probe measurement, confirming that the electrical contact resistance will introduce a large error. The present study experimentally demonstrates a reasonable explanation to the discouragingly broad span in the Lorenz number obtained from different metallic nanostructures.


PROVIDER: S-EPMC5861060 | BioStudies | 2018-01-01T00:00:00Z

REPOSITORIES: biostudies

Similar Datasets

2020-01-01 | S-EPMC7182422 | BioStudies
2020-01-01 | S-EPMC7596098 | BioStudies
1000-01-01 | S-EPMC6173759 | BioStudies
2018-01-01 | S-EPMC6112745 | BioStudies
1000-01-01 | S-EPMC3997807 | BioStudies
1000-01-01 | S-EPMC6050324 | BioStudies
1000-01-01 | S-EPMC4673876 | BioStudies
2015-01-01 | S-EPMC4544018 | BioStudies
1000-01-01 | S-EPMC4073183 | BioStudies
2018-01-01 | S-EPMC5789382 | BioStudies