Differentiation Therapy Targeting the ?-Catenin/CBP Interaction in Pancreatic Cancer.
Ontology highlight
ABSTRACT: BACKGROUND:Although canonical Wnt signaling is known to promote tumorigenesis in pancreatic ductal adenocarcinoma (PDAC), a cancer driven principally by mutant K-Ras, the detailed molecular mechanisms by which the Wnt effector ?-catenin regulates such tumorigenesis are largely unknown. We have previously demonstrated that ?-catenin's differential usage of the Kat3 transcriptional coactivator cyclic AMP-response element binding protein-binding protein (CBP) over its highly homologous coactivator p300 increases self-renewal and suppresses differentiation in other types of cancer. AIM/METHODS:To investigate Wnt-mediated carcinogenesis in PDAC, we have used the specific small molecule CBP/?-catenin antagonist, ICG-001, which our lab identified and has extensively characterized, to examine its effects in human pancreatic cancer cells and in both an orthotopic mouse model and a human patient-derived xenograft (PDX) model of PDAC. RESULTS/CONCLUSION:We report for the first time that K-Ras activation increases the CBP/?-catenin interaction in pancreatic cancer; and that ICG-001 specific antagonism of the CBP/?-catenin interaction sensitizes pancreatic cancer cells and tumors to gemcitabine treatment. These effects were associated with increases in the expression of let-7a microRNA; suppression of K-Ras and survivin; and the elimination of drug-resistant cancer stem/tumor-initiating cells.
PROVIDER: S-EPMC5923350 | BioStudies |
REPOSITORIES: biostudies
ACCESS DATA