Unknown

Dataset Information

0

CPKC?-Modulated Sequential Reactivation of mTOR Inhibited Autophagic Flux in Neurons Exposed to Oxygen Glucose Deprivation/Reperfusion.


ABSTRACT: We have reported that conventional protein kinase Cγ (cPKCγ)-modulated neuron-specific autophagy improved the neurological outcome of mice following ischemic stroke through the Akt-mechanistic target of rapamycin (mTOR) pathway. However, its detailed molecular mechanism remains unclear. In this study, primary cortical neurons from postnatal one-day-old C57BL/6J cPKCγ wild-type (cPKCγ+/+) and knockout (cPKCγ−/−) mice suffering oxygen glucose deprivation/reperfusion (OGD/R) were used to simulate ischemia/reperfusion injury in vitro. A block of autophagic flux was observed in cPKCγ+/+ neurons under OGD/R exposure, characterized by accumulation of p62. Immunofluorescent results showed a decrease in colocalization between LC3 and Atg14 or Stx17 in cPKCγ+/+ neurons when compared with cPKCγ−/− neurons after OGD/R. However, the colocalization between LC3 and Lamp2 was barely decreased, indicating the presence of autolysosomes. The larger lysotracker-positive structures were also significantly increased. These results suggest that cPKCγ-induced inhibition of autophagy occurred at the stages of autophagosome formation, Stx17 anchoring, and the degradation of autolysosomes in particular. In addition, cPKCγ-modulated phosphorylation of mTOR at Ser 2481 was dependent on the site of Ser 2448, which may have blocked autophagic flux. cPKCγ-modulated sequential reactivation of mTOR inhibited autophagic flux in neurons exposed to OGD/R, which may provide endogenous interventional strategies for stroke, especially ischemia/reperfusion injury.

SUBMITTER: Hua R 

PROVIDER: S-EPMC5983661 | BioStudies | 2018-01-01

REPOSITORIES: biostudies

Similar Datasets

2015-01-01 | S-EPMC4709476 | BioStudies
2018-01-01 | S-EPMC6251140 | BioStudies
2020-01-01 | S-EPMC7294676 | BioStudies
2020-01-01 | S-EPMC7578720 | BioStudies
2020-01-01 | S-EPMC7387098 | BioStudies
2019-01-01 | S-EPMC6804185 | BioStudies
2019-01-01 | S-EPMC6690976 | BioStudies
2017-01-01 | S-EPMC5517505 | BioStudies
2020-01-01 | S-EPMC7492797 | BioStudies
1000-01-01 | S-EPMC5260994 | BioStudies