Unknown

Dataset Information

0

Susceptibility to audio signals during autonomous driving.


ABSTRACT: We investigate how susceptible human drivers are to auditory signals in three situations: when stationary, when driving, or when being driven by an autonomous vehicle. Previous research has shown that human susceptibility is reduced when driving compared to when being stationary. However, it is not known how susceptible humans are under autonomous driving conditions. At the same time, good susceptibility is crucial under autonomous driving conditions, as such systems might use auditory signals to communicate a transition of control from the automated vehicle to the human driver. We measured susceptibility using a three-stimulus auditory oddball paradigm while participants experienced three driving conditions: stationary, autonomous, or driving. We studied susceptibility through the frontal P3 (fP3) Electroencephalography Event-Related Potential response (EEG ERP response). Results show that the fP3 component is reduced in autonomous compared to stationary conditions, but not as strongly as when participants drove themselves. In addition, the fP3 component is further reduced when the oddball task does not require a response (i.e., in a passive condition, versus active). The implication is that, even in a relatively simple autonomous driving scenario, people's susceptibility of auditory signals is not as high as would be beneficial for responding to auditory stimuli.

SUBMITTER: van der Heiden RMA 

PROVIDER: S-EPMC6089411 | BioStudies | 2018-01-01T00:00:00Z

REPOSITORIES: biostudies

Similar Datasets

1000-01-01 | S-EPMC5681523 | BioStudies
2012-01-01 | S-EPMC5242090 | BioStudies
2017-01-01 | S-EPMC5495435 | BioStudies
2020-01-01 | S-EPMC7249664 | BioStudies
2019-01-01 | S-EPMC6884475 | BioStudies
2021-01-01 | S-EPMC7857611 | BioStudies
2020-01-01 | S-EPMC7531228 | BioStudies
2015-01-01 | S-EPMC4300257 | BioStudies
2017-01-01 | S-EPMC5584579 | BioStudies
2019-01-01 | S-EPMC6545538 | BioStudies