Dataset Information


Second-order nonlinear optical switching with a record-high contrast for a photochromic and thermochromic bistable crystal.

ABSTRACT: Nonlinear optical (NLO) switchable materials are important for photonic and optoelectronic technologies. One important issue for NLO photoswitching, the most studied physical switching approach, is how to improve the switching contrast of second harmonic generation (SHG) in crystals, because the known values are generally below 3 times. Thermoswitching, as another approach, has shown impressive high SHG-switching contrasts (4-? times), but the fast decay of thermally induced states demands constant heat sources to maintain specific SHG intensities. We have synthesized a photochromic and thermochromic bistable acentric compound, ?-[(MQ)ZnCl3] (MQ+ = N-methyl-4,4'-bipyridinium), which represents the first crystalline compound with both photo- and heat-induced SHG-switching behavior and the first example of a thermoswitchable NLO crystal that can maintain its expected second-order NLO intensity without any heat source. The SHG-switching contrast can reach about 8 times after laser irradiation or 2 times after thermal annealing. The former value is the highest recorded for photoswitchable NLO crystals. This work also indicates that higher SHG-switching contrasts may be obtained through increasing electron-transfer efficiency, variation of permanent dipole moment, and self-absorption.


PROVIDER: S-EPMC6118235 | BioStudies | 2017-01-01

REPOSITORIES: biostudies

Similar Datasets

2016-01-01 | S-EPMC6024201 | BioStudies
1000-01-01 | S-EPMC5432528 | BioStudies
2020-01-01 | S-EPMC7044425 | BioStudies
1000-01-01 | S-EPMC6213473 | BioStudies
2018-01-01 | S-EPMC6301201 | BioStudies
2013-01-01 | S-EPMC3640472 | BioStudies
2019-01-01 | S-EPMC6648906 | BioStudies
2013-01-01 | S-EPMC3629472 | BioStudies
2020-01-01 | S-EPMC7553043 | BioStudies
2020-01-01 | S-EPMC7497644 | BioStudies