Unknown

Dataset Information

0

Human-exoskeleton control simulation, kinetic and kinematic modeling and parameters extraction.


ABSTRACT: Exoskeletons are new robotic systems that are in close contact with the human body. Thus, their performances are influenced by many factors, including the selection of its structure, actuators, measurement devices, parameters, and mechanism of coupling to the human body. The latter offers numerous challenges to its design, evaluation and modification, including analyzing the effectiveness of the exoskeleton, finding the optimal force for actuators and, discovering the effect of changes in design parameters on human muscle behavior, which are very difficult to measure. Therefore, numerical simulations play an important role in solving these challenges and have the potential to improve treatment strategies and medical decision-making. In this study, a simulation-based method is presented for the designing and analysis of the parameters of an exoskeleton and its wearer's kinetics and kinematics. Model-based design software, including OpenSim and Inventor, and mathematical software, such as MATLAB, are integrated. This method can assist in the modification of exoskeleton devices and allow physiologists, neuroscientists, and physical therapists to generate new solutions for rehabilitation programs using exoskeletons. •Using the movements parameters of each individual subject in her/his exoskeleton design.•Combining the power of OpenSim body movement and the ability of Matlab in mathematical calculations.•Considering the effect of exoskeleton parameters on each muscle-skeleton movement.

SUBMITTER: Khamar M 

PROVIDER: S-EPMC6726754 | BioStudies | 2019-01-01

REPOSITORIES: biostudies

Similar Datasets

2016-01-01 | S-EPMC5110426 | BioStudies
2018-01-01 | S-EPMC5841020 | BioStudies
2018-01-01 | S-EPMC6200209 | BioStudies
1000-01-01 | S-EPMC4036406 | BioStudies
2019-01-01 | S-EPMC6642539 | BioStudies
2014-01-01 | S-EPMC4229366 | BioStudies
2019-01-01 | S-EPMC7032067 | BioStudies
2017-01-01 | S-EPMC6514464 | BioStudies
1000-01-01 | S-EPMC6260663 | BioStudies
2020-01-01 | S-EPMC6954546 | BioStudies