Dataset Information


A novel role for the actin-binding protein drebrin in regulating opiate addiction.

ABSTRACT: Persistent transcriptional and morphological events in the nucleus accumbens (NAc) and other brain reward regions contribute to the long-lasting behavioral adaptations that characterize drug addiction. Opiate exposure reduces the density of dendritic spines on medium spiny neurons of the NAc; however, the underlying transcriptional and cellular events mediating this remain unknown. We show that heroin self-administration negatively regulates the actin-binding protein drebrin in the NAc. Using virus-mediated gene transfer, we show that drebrin overexpression in the NAc is sufficient to decrease drug seeking and increase dendritic spine density, whereas drebrin knockdown potentiates these effects. We demonstrate that drebrin is transcriptionally repressed by the histone modifier HDAC2, which is relieved by pharmacological inhibition of histone deacetylases. Importantly, we demonstrate that heroin-induced adaptations occur only in the D1+ subset of medium spiny neurons. These findings establish an essential role for drebrin, and upstream transcriptional regulator HDAC2, in opiate-induced plasticity in the NAc.


PROVIDER: S-EPMC6742638 | BioStudies | 2019-01-01

REPOSITORIES: biostudies

Similar Datasets

2018-01-01 | S-EPMC6099455 | BioStudies
2018-01-01 | S-EPMC6186840 | BioStudies
2017-01-01 | S-EPMC5747312 | BioStudies
2013-01-01 | S-EPMC3760615 | BioStudies
2011-01-01 | S-EPMC3251523 | BioStudies
2019-01-01 | S-EPMC6589693 | BioStudies
2010-01-01 | S-EPMC2866048 | BioStudies
1000-01-01 | S-EPMC2666743 | BioStudies
2014-01-01 | S-EPMC3899004 | BioStudies
2015-01-01 | S-EPMC4408054 | BioStudies