Unknown

Dataset Information

0

Shape Effects of Cylindrical versus Spherical Unimolecular Polymer Nanomaterials on in Vitro and in Vivo Behaviors.


ABSTRACT: To date, how the shape of nanomaterials influences their biological properties is poorly understood, due to the insufficient controllability of current preparative methods, especially in the shape and size of nanomaterials. In this paper, we achieved the precise syntheses of nanoscale unimolecular cylindrical polymer brushes (CPBs) and spherical polymer nanoparticles (SPNPs) with the same volume and surface chemistry, which ensured that shape was essentially the only variable when their biological performance was compared. Accurate shape effects were obtained. Impressively, the CPBs had remarkable advantage in tissue penetration over the SPNPs. The CPBs also exhibited higher cellular uptake and rapider body clearance than the SPNPs, whereas the SPNPs had longer blood circulation time, rapider tumor vascular extravasation, and higher tumor accumulation than the CPBs. Additionally, this work also provided a controllable synthesis strategy for nanoscale unimolecular SPNPs by integrating 21 CPBs to a ?-cyclodextrin core, whose diameter in dry state could be up to 45 nm.

SUBMITTER: Zhang Z 

PROVIDER: S-EPMC6750067 | BioStudies | 2019-01-01

REPOSITORIES: biostudies

Similar Datasets

2021-01-01 | S-EPMC7907010 | BioStudies
2016-01-01 | S-EPMC4865460 | BioStudies
2018-01-01 | S-EPMC5803323 | BioStudies
2015-01-01 | S-EPMC4329508 | BioStudies
2017-01-01 | S-EPMC5538929 | BioStudies
2016-01-01 | S-EPMC6431966 | BioStudies
2016-01-01 | S-EPMC4861350 | BioStudies
1000-01-01 | S-EPMC3167620 | BioStudies
2017-01-01 | S-EPMC5180596 | BioStudies
2017-01-01 | S-EPMC5914160 | BioStudies