Dataset Information


Compendiums of cancer transcriptomes for machine learning applications.

ABSTRACT: There are massive transcriptome profiles in the form of microarray. The challenge is that they are processed using diverse platforms and preprocessing tools, requiring considerable time and informatics expertise for cross-dataset analyses. If there exists a single, integrated data source, data-reuse can be facilitated for discovery, analysis, and validation of biomarker-based clinical strategy. Here, we present merged microarray-acquired datasets (MMDs) across 11 major cancer types, curating 8,386 patient-derived tumor and tumor-free samples from 95 GEO datasets. Using machine learning algorithms, we show that diagnostic models trained from MMDs can be directly applied to RNA-seq-acquired TCGA data with high classification accuracy. Machine learning optimized MMD further aids to reveal immune landscape across various carcinomas critically needed in disease management and clinical interventions. This unified data source may serve as an excellent training or test set to apply, develop, and refine machine learning algorithms that can be tapped to better define genomic landscape of human cancers.


PROVIDER: S-EPMC6783425 | BioStudies | 2019-01-01

SECONDARY ACCESSION(S): 10.6084/m9.figshare.5350321

REPOSITORIES: biostudies

Similar Datasets

1000-01-01 | S-EPMC5868307 | BioStudies
2020-01-01 | S-EPMC7325087 | BioStudies
2010-05-19 | E-GEOD-15370 | ArrayExpress
2019-01-01 | S-EPMC6584533 | BioStudies
2019-01-01 | S-EPMC6945005 | BioStudies
2019-01-01 | S-EPMC6678298 | BioStudies
2009-11-24 | GSE15370 | GEO
2020-01-01 | S-EPMC7169028 | BioStudies
2020-01-01 | S-EPMC7385162 | BioStudies
2020-01-24 | GSE144000 | GEO