Dataset Information


A Multi-Omics Interpretable Machine Learning Model Reveals Modes of Action of Small Molecules.

ABSTRACT: High-throughput screening and gene signature analyses frequently identify lead therapeutic compounds with unknown modes of action (MoAs), and the resulting uncertainties can lead to the failure of clinical trials. We developed an approach for uncovering MoAs through an interpretable machine learning model of transcriptomics, epigenomics, metabolomics, and proteomics. Examining compounds with beneficial effects in models of Huntington's Disease, we found common MoAs for compounds with unrelated structures, connectivity scores, and binding targets. The approach also predicted highly divergent MoAs for two FDA-approved antihistamines. We experimentally validated these effects, demonstrating that one antihistamine activates autophagy, while the other targets bioenergetics. The use of multiple omics was essential, as some MoAs were virtually undetectable in specific assays. Our approach does not require reference compounds or large databases of experimental data in related systems and thus can be applied to the study of agents with uncharacterized MoAs and to rare or understudied diseases.

SUBMITTER: Patel-Murray NL 

PROVIDER: S-EPMC6976599 | BioStudies | 2020-01-01

REPOSITORIES: biostudies

Similar Datasets

2019-01-01 | S-EPMC6884918 | BioStudies
2018-01-01 | S-EPMC6051324 | BioStudies
2020-01-01 | S-EPMC6945582 | BioStudies
2016-01-01 | S-EPMC5988513 | BioStudies
1000-01-01 | S-EPMC4972561 | BioStudies
2020-01-01 | S-EPMC7492759 | BioStudies
2014-01-01 | S-EPMC4474179 | BioStudies
2018-01-01 | S-EPMC6544516 | BioStudies
2007-01-01 | S-EPMC2012971 | BioStudies
2014-01-01 | S-EPMC4653042 | BioStudies