Dataset Information


X-ray processing of a realistic ice mantle can explain the gas abundances in protoplanetary disks.

ABSTRACT: The Atacama Large Millimeter Array has allowed a detailed observation of molecules in protoplanetary disks, which can evolve toward solar systems like our own. While CO, [Formula: see text], HCO, and [Formula: see text] are often abundant species in the cold zones of the disk, [Formula: see text] or [Formula: see text] are only found in a few regions, and more-complex organic molecules are not observed. We simulate, experimentally, ice processing in disks under realistic conditions, that is, layered ices irradiated by soft X-rays. X-ray emission from young solar-type stars is thousands of times brighter than that of today's sun. The ice mantle is composed of a [Formula: see text]:[Formula: see text]:[Formula: see text] mixture, covered by a layer made of [Formula: see text] and CO. The photoproducts found desorbing from both ice layers to the gas phase during the irradiation converge with those detected in higher abundances in the gas phase of protoplanetary disks, providing important insights on the nonthermal processes that drive the chemistry in these objects.

SUBMITTER: Ciaravella A 

PROVIDER: S-EPMC7368282 | BioStudies | 2020-01-01

REPOSITORIES: biostudies

Similar Datasets

1000-01-01 | S-EPMC1567866 | BioStudies
2017-01-01 | S-EPMC5662148 | BioStudies
2016-01-01 | S-EPMC5068330 | BioStudies
1000-01-01 | S-EPMC4942334 | BioStudies
2019-01-01 | S-EPMC6410777 | BioStudies
2018-01-01 | S-EPMC6055204 | BioStudies
2017-01-01 | S-EPMC5582381 | BioStudies
2018-01-01 | S-EPMC5884421 | BioStudies
2013-01-01 | S-EPMC3890361 | BioStudies
2020-01-01 | S-EPMC7136191 | BioStudies