Dataset Information


Acteoside as a potential therapeutic option for primary hepatocellular carcinoma: a preclinical study

ABSTRACT: Background Hepatocellular carcinoma (HCC) is a common malignant tumor with characteristics of poor prognosis, high morbidity and mortality worldwide. In particular, only a few systemic treatment options are available for advanced HCC patients, and include sorafenib and the recently described atezolizumab plus bevacizumab regimen as possible first-line treatments. We here propose acteoside, a phenylethanoid glycoside widely distributed in many medicinal plants as a potential candidate against advanced HCC. Methods Cell proliferation, colony formation and migration were analyzed in the three human HCC cell lines BEL7404, HLF and JHH-7. Angiogenesis assay was performed using HUVESs. The BEL7404 or JHH-7 xenograft nude mice model was established to analyze the possible antitumor effects of acteoside. qRT-PCR and western blotting were used to reveal the potential antitumor mechanisms of acteoside. Results Acteoside inhibited cell proliferation, colony formation and migration in all the three human HCC cell lines BEL7404, HLF and JHH-7. The prohibition of angiogenesis by acteoside was revealed by the inhibition of tube formation and cell migration of HUVECs. The combination of acteoside and sorafenib produced stronger inhibition of cell colony formation and migration of the HCC cells as well as of angiogenesis of HUVECs. The in vivo antitumor efficacy of acteoside was further demonstrated in BEL7404 or JHH-7 xenograft nude mice model, with an enhancement when combined with sorafenib in inhibiting the growth of JHH-7 xenograft. Further treatment of JHH-7 cells with acteoside revealed an increase in the level of tumor suppressor protein p53 as well as a decrease of kallikrein-related peptidase (KLK1, 2, 4, 9 and 10) gene level with no significant changes of the rest of KLK1–15 genes. Conclusions Acteoside exerts an antitumor effect possibly through its up-regulation of p53 levels as well as inhibition of KLK expression and angiogenesis. Acteoside could be useful as an adjunct in the treatment of advanced HCC in the clinic.


PROVIDER: S-EPMC7526186 | BioStudies | 2020-01-01

REPOSITORIES: biostudies

Similar Datasets

2019-01-01 | S-EPMC6489087 | BioStudies
1000-01-01 | S-EPMC5610170 | BioStudies
2019-01-01 | S-EPMC6511249 | BioStudies
2018-01-01 | S-EPMC6272102 | BioStudies
2020-01-01 | S-EPMC7330926 | BioStudies
2020-01-01 | S-EPMC7247445 | BioStudies
2017-01-01 | S-EPMC5559959 | BioStudies
2018-01-01 | S-EPMC6172479 | BioStudies
2015-01-01 | S-EPMC4452157 | BioStudies
2017-01-01 | S-EPMC5403635 | BioStudies