Unknown

Dataset Information

0

Predicting mean ribosome load for 5'UTR of any length using deep learning.


ABSTRACT: The 5' untranslated region plays a key role in regulating mRNA translation and consequently protein abundance. Therefore, accurate modeling of 5'UTR regulatory sequences shall provide insights into translational control mechanisms and help interpret genetic variants. Recently, a model was trained on a massively parallel reporter assay to predict mean ribosome load (MRL)-a proxy for translation rate-directly from 5'UTR sequence with a high degree of accuracy. However, this model is restricted to sequence lengths investigated in the reporter assay and therefore cannot be applied to the majority of human sequences without a substantial loss of information. Here, we introduced frame pooling, a novel neural network operation that enabled the development of an MRL prediction model for 5'UTRs of any length. Our model shows state-of-the-art performance on fixed length randomized sequences, while offering better generalization performance on longer sequences and on a variety of translation-related genome-wide datasets. Variant interpretation is demonstrated on a 5'UTR variant of the gene HBB associated with beta-thalassemia. Frame pooling could find applications in other bioinformatics predictive tasks. Moreover, our model, released open source, could help pinpoint pathogenic genetic variants.

PROVIDER: S-EPMC8136849 | BioStudies |

REPOSITORIES: biostudies

Similar Datasets

1993-01-01 | S-EPMC48018 | BioStudies
| S-EPMC1143759 | BioStudies
| S-EPMC6790604 | BioStudies
| S-EPMC5487564 | BioStudies
| S-EPMC4521823 | BioStudies
| S-EPMC7756225 | BioStudies
| S-EPMC4183807 | BioStudies
| S-EPMC5074520 | BioStudies
| S-EPMC2652341 | BioStudies
| S-EPMC6779386 | BioStudies