Project description:Major depressive disorder (MDD) exhibits numerous clinical, epidemiological, and molecular features that are consistent with partially inherited and partially acquired epigenetic misregulation. We performed microarray based DNA modification study of MDD, utilizing affected and unaffected samples from white blood cells from monozygotic twins discordant for MDD, post-mortem prefrontal cortex tissues, and sperm samples. We performed DNA methylome analysis on white blood cells from monozygotic twins discordant for depression (n=200), pre-frontal cortex (n=71), and germline samples (n=33) from affected individuals and controls (total n=304). DNA samples were enriched for unmodified fraction of the genome using DNA-modification sensitive restriction enzyme digestion followed by adaptor-mediated PCR. The enriched fractions were labelled with a fluorescent dye (Cy5) and hybridized onto the array with a common reference pool (Cy3) generated from individuals unrelated to this study.
Project description:Background: Major Depressive Disorder (MDD) is a moderately heritable disorder with a high lifetime prevalence. At present, laboratory blood tests to support MDD diagnosis are not available. Methods: We used a classifier approach on blood gene expression profiles of a unique set of non-medicated subjects (MDD patients and controls) to select genes of which expression is predictive for disease status. To reveal blood gene expression changes related to MDD disease, we applied a powerful ex vivo stimulus to the blood, i.e. incubation with lipopolysaccharide (LPS; 10 ng/ml blood). Results: Based on LPS-stimulated blood gene expression using whole-genome microarrays in 42 subjects (primary cohort; 21 MDD patients (mean age 42.3 years), 21 healthy controls (mean age 41.9 years)), we identified a set of genes (CAPRIN1, CLEC4A, KRT23, MLC1, PLSCR1, PROK2, ZBTB16) that serves as a molecular signature of MDD. These findings were validated for the primary cohort using an independent quantitative PCR method (P = 0.007). The difference between depressive patients and controls was confirmed (P = 0.019) in a replication cohort of 13 patients with MDD (mean age 42.8 years) and 14 controls (mean age 45.6 years). The MDD-signature score comprised of expression levels of 7 genes could discriminate depressive patients from controls with sensitivity of 76.9% and specificity of 71.8%. Conclusions: We show for the first time that molecular analysis of stimulated blood cells can be used as an endophenotype for MDD diagnosis, which is a milestone in establishing biomarkers for neuropsychiatric disorders with moderate heritability in general. Our results may provide a new entry point for following and predicting treatment outcome, as well as prediction of severity and recurrence of MDD. In total, 33 MDD patients and 34 healthy controls were analyzed using basal gene expression in whole blood, and gene expression from whole blood that was stimulated with LPS for 5-6 h, using microarrays. Patients were arbitrarily selected from all patients to serve as primary cohort (nMDD = 21 (MDD01-MDD21); nControls = 21 (Con01-Con21)), or replication cohort (nMDD = 12 (MDD22-MDD35); nControls = 13 (Con22-Con37)) using microarrays. This submission does not include Samples CON21_LPS or CON30_LPS.
Project description:Background: Major Depressive Disorder (MDD) is a moderately heritable disorder with a high lifetime prevalence. At present, laboratory blood tests to support MDD diagnosis are not available. Methods: We used a classifier approach on blood gene expression profiles of a unique set of non-medicated subjects (MDD patients and controls) to select genes of which expression is predictive for disease status. To reveal blood gene expression changes related to MDD disease, we applied a powerful ex vivo stimulus to the blood, i.e. incubation with lipopolysaccharide (LPS; 10 ng/ml blood). Results: Based on LPS-stimulated blood gene expression using whole-genome microarrays in 42 subjects (primary cohort; 21 MDD patients (mean age 42.3 years), 21 healthy controls (mean age 41.9 years)), we identified a set of genes (CAPRIN1, CLEC4A, KRT23, MLC1, PLSCR1, PROK2, ZBTB16) that serves as a molecular signature of MDD. These findings were validated for the primary cohort using an independent quantitative PCR method (P = 0.007). The difference between depressive patients and controls was confirmed (P = 0.019) in a replication cohort of 13 patients with MDD (mean age 42.8 years) and 14 controls (mean age 45.6 years). The MDD-signature score comprised of expression levels of 7 genes could discriminate depressive patients from controls with sensitivity of 76.9% and specificity of 71.8%. Conclusions: We show for the first time that molecular analysis of stimulated blood cells can be used as an endophenotype for MDD diagnosis, which is a milestone in establishing biomarkers for neuropsychiatric disorders with moderate heritability in general. Our results may provide a new entry point for following and predicting treatment outcome, as well as prediction of severity and recurrence of MDD. Overall design: In total, 33 MDD patients and 34 healthy controls were analyzed using basal gene expression in whole blood, and gene expression from whole blood that was stimulated with LPS for 5-6 h, using microarrays. Patients were arbitrarily selected from all patients to serve as primary cohort (nMDD = 21 (MDD01-MDD21); nControls = 21 (Con01-Con21)), or replication cohort (nMDD = 12 (MDD22-MDD35); nControls = 13 (Con22-Con37)) using microarrays. This submission does not include Samples CON21_LPS or CON30_LPS.
Project description:<h4>Background</h4>There is growing interest in neurofeedback as a treatment for major depressive disorder. Reduction of asymmetry of alpha-activity between left and right prefrontal areas with neurofeedback has been postulated as effective in earlier studies. Unfortunately, methodological shortcomings limit conclusions that can be drawn from these studies. In a pilot-study, we investigated the effectiveness of reduction of asymmetry of alpha-activity with neurofeedback in depressed participants with the use of a stringent methodological approach.<h4>Methods</h4>Nine participants meeting DSM-IV criteria for major depressive disorder were treated with a maximum of 30 neurofeedback-sessions, aimed at reducing asymmetry of alpha-activity, over a 10-week period. No changes in the use of antidepressants were allowed 6 weeks before and during the intervention. Changes in depressive symptomatology were assessed with the Quick Inventory of Depressive Symptoms, self-report version.<h4>Results</h4>We observed response in 1 and remission in 4 out of a total of 9 participants. The effectiveness appeared largest in female participants. The mean asymmetry of alpha-activity decreased significantly over sessions in a quadratic fashion. This decrease was associated with clinical response.<h4>Conclusions</h4>This pilot study suggests that neurofeedback aimed at a reduction of frontal asymmetry of alpha-activity may be effective as a treatment for depression. However, this was an open label pilot study. Non-specific effects of the procedure and/or a beneficial natural course may have confounded the results. Randomized controlled trials will have to establish the efficacy of neurofeedback for depression.<h4>Trial registration</h4>Nederlands Trial Register NTR1629.
Project description:Major depressive disorder (MDD) is one of the most common psychiatric disorders, but pharmacological treatments are ineffective in a substantial fraction of patients and are accompanied by unwanted side effects. Here we evaluated the feasibility and efficacy of transcranial alternating current stimulation (tACS) at 10?Hz, which we hypothesized would improve clinical symptoms by renormalizing alpha oscillations in the left dorsolateral prefrontal cortex (dlPFC). To this end, 32 participants with MDD were randomized to 1 of 3 arms and received daily 40?min sessions of either 10?Hz-tACS, 40?Hz-tACS, or active sham stimulation for 5 consecutive days. Symptom improvement was assessed using the Montgomery-Åsberg Depression Rating Scale (MADRS) as the primary outcome. High-density electroencephalograms (hdEEGs) were recorded to measure changes in alpha oscillations as the secondary outcome. For the primary outcome, we did not observe a significant interaction between treatment condition (10?Hz-tACS, 40?Hz-tACS, sham) and session (baseline to 4 weeks after completion of treatment); however, exploratory analyses show that 2 weeks after completion of the intervention, the 10?Hz-tACS group had more responders (MADRS and HDRS) compared with 40?Hz-tACS and sham groups (n?=?30, p?=?0.026). Concurrently, we found a significant reduction in alpha power over the left frontal regions in EEG after completion of the intervention for the group that received per-protocol 10?Hz-tACS (n?=?26, p?<?0.05). Our data suggest that targeting oscillations with tACS has potential as a therapeutic intervention for treatment of MDD.
Project description:We examined the genetic profile of postmortem brain (hippocampal) samples; 15 brains from patients diagnosed with MDD were matched to brains from healthy subjects based on gender, race and age. Gene expression profiles in the dentate gyrus and CA1 subregions of the hippocampus were assessed by cDNA hybridization to 48K human HEEBO whole genome microarrays (Microarray, Inc). Two-group comparison: MDD (13 male, 8 female) vs. Control (11 male, 7 female). Dentate Gyrus (DG): 15 pairs of samples (1 array per pair); CA1: 15 pairs of samples (1 array per pair). Biological replicates. We can not provide a list of normalized values for each individual hybridization (per chip), but rather have a list of average expression values for all hybridizations used in the experiment (n=15). See supplementary files below. CODES: AAm, African American; C, Caucasian; CO, carbon monoxide; CVD, cardiovascular disease; ETOH, ethanol; F, female; Hx, history of alcohol abuse but not currently active; M, male; MDD, Major Depressive disorder, ND, no psychotropic medication detected; NOS, not otherwise specified, OD, drug overdose; PE, prior episode of major depression with psychotic features; PMI, postmortem interval (hours); SIGSW, self-inflicted gunshot wound; [1], Psychotrophic prescriptions within last month; [2], MDD in remission; [3], prescriptions for six days prior to death; *, samples present only in array sets for the dentate gyrus; **, samples present only in array sets for CA1.
Project description:Major depressive disorder (MDD) exhibits numerous clinical, epidemiological, and molecular features that are consistent with partially inherited and partially acquired epigenetic misregulation. We performed microarray based DNA modification study of MDD, utilizing affected and unaffected samples from white blood cells from monozygotic twins discordant for MDD, post-mortem prefrontal cortex tissues, and sperm samples. We performed DNA methylome analysis on white blood cells from monozygotic twins discordant for depression (n=200), pre-frontal cortex (n=71), and germline samples (n=33) from affected individuals and controls (total n=304). DNA samples were enriched for unmodified fraction of the genome using DNA-modification sensitive restriction enzyme digestion followed by adaptor-mediated PCR. The enriched fractions were labelled with a fluorescent dye (Cy5) and hybridized onto the array with a common reference pool (Cy3) generated from individuals unrelated to this study.
Project description:Trazodone is a triazolopyridine derivative that belongs to the class of serotonin receptor antagonists and reuptake inhibitors (SARIs). The drug is approved and marketed in several countries worldwide for the treatment of major depressive disorder (MDD) in adult patients. In clinical studies, trazodone has demonstrated comparable antidepressant activity to other drug classes, including tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs) and serotonin-noradrenaline (norepinephrine) reuptake inhibitors (SNRIs). Moreover, the SARI action of trazodone may overcome the tolerability issues that are often associated with second-generation antidepressants such as SSRIs (i.e. insomnia, anxiety and sexual dysfunction). Recent focus has been placed on the development of a new prolonged-release once-a-day formulation of trazodone (TzCOAD), which may provide improved tolerability over the conventional immediate-release formulation of trazodone. Clinical studies have led to the recent approval in the USA of TzCOAD (as Oleptro™; Angelini Labopharm LLC, Princeton, NJ, USA), which may see resurgence of interest in the drug for the management of patients with MDD. Although trazodone is approved for the treatment of depression, evidence supports the use of low-dose trazodone as an off-label hypnotic for the treatment of sleep disorders in patients with MDD. The most common adverse effects reported with trazodone are drowsiness (somnolence/sedation), headache, dizziness and dry mouth. Other events reported, albeit with low incidence, include orthostatic hypotension (particularly in elderly patients or those with heart disease), minimal anticholinergic activity, corrected QT interval prolongation and torsade de pointes, cardiac arrhythmias, and rare occurrences of priapism and suicidal ideation. Overall, trazodone is an effective and well tolerated antidepressant (SARI) with an important role in the current treatment of MDD both as monotherapy and as part of a combination strategy. Trazodone is effective in controlling a wide range of symptoms of depression, while avoiding the negative effects on sleep seen with SSRI antidepressants. The recently approved prolonged-release formulation should provide further optimization of this antidepressant and may be useful for enabling an appropriate therapeutic dose to be administered with improved patient compliance.
Project description:In this Seminar we discuss developments from the past 5 years in the diagnosis, neurobiology, and treatment of major depressive disorder. For diagnosis, psychiatric and medical comorbidity have been emphasised as important factors in improving the appropriate assessment and management of depression. Advances in neurobiology have also increased, and we aim to indicate genetic, molecular, and neuroimaging studies that are relevant for assessment and treatment selection of this disorder. Further studies of depression-specific psychotherapies, the continued application of antidepressants, the development of new treatment compounds, and the status of new somatic treatments are also discussed. We address two treatment-related issues: suicide risk with selective serotonin reuptake inhibitors, and the safety of antidepressants in pregnancy. Although clear advances have been made, no fully satisfactory treatments for major depression are available.