Dataset Information


Characterization of an A3G-VifHIV-1-CRL5-CBFβ Structure Using a Cross-linking Mass Spectrometry Pipeline for Integrative Modeling of Host-Pathogen Complexes.

ABSTRACT: Structural analysis of host-pathogen protein complexes remains challenging, largely due to their structural heterogeneity. Here, we describe a pipeline for the structural characterization of these complexes using integrative structure modeling based on chemical cross-links and residue-protein contacts inferred from mutagenesis studies. We used this approach on the HIV-1 Vif protein bound to restriction factor APOBEC3G (A3G), the Cullin-5 E3 ring ligase (CRL5), and the cellular transcription factor Core Binding Factor Beta (CBFβ) to determine the structure of the (A3G-Vif-CRL5-CBFβ) complex. Using the MS-cleavable DSSO cross-linker to obtain a set of 132 cross-links within this reconstituted complex along with the atomic structures of the subunits and mutagenesis data, we computed an integrative structure model of the heptameric A3G-Vif-CRL5-CBFβ complex. The structure, which was validated using a series of tests, reveals that A3G is bound to Vif mostly through its N-terminal domain. Moreover, the model ensemble quantifies the dynamic heterogeneity of the A3G C-terminal domain and Cul5 positions. Finally, the model was used to rationalize previous structural, mutagenesis and functional data not used for modeling, including information related to the A3G-bound and unbound structures as well as mapping functional mutations to the A3G-Vif interface. The experimental and computational approach described here is generally applicable to other challenging host-pathogen protein complexes.

PROVIDER: S-EPMC8459920 | BioStudies |

REPOSITORIES: biostudies

Similar Datasets

2021-11-03 | PXD025391 | Pride
2014-01-01 | S-EPMC3993832 | BioStudies
| S-EPMC4456288 | BioStudies
| S-EPMC3139112 | BioStudies
| S-EPMC7835321 | BioStudies
| S-EPMC2772817 | BioStudies
| S-EPMC4670588 | BioStudies
| S-EPMC8172064 | BioStudies
| S-EPMC6138441 | BioStudies
| S-EPMC4248342 | BioStudies