Project description:Autism spectrum disorder (ASD) manifests early in childhood. While genetic variants increase risk for ASD, a growing body of literature has established that in utero chemical exposures also contribute to ASD risk. These chemicals include air-based pollutants like diesel particulate matter (DPM). A combination of single-cell and direct transcriptomics of DPM-exposed human-induced pluripotent stem cell-derived cerebral organoids revealed toxicogenomic effects of DPM exposure during fetal brain development. Direct transcriptomics, sequencing RNA bases via Nanopore, revealed that cerebral organoids contain extensive RNA modifications, with DPM-altering cytosine methylation in oxidative mitochondrial transcripts expressed in outer radial glia cells. Single-cell transcriptomics further confirmed an oxidative phosphorylation change in cell groups such as outer radial glia upon DPM exposure. This approach highlights how DPM exposure perturbs normal mitochondrial function and cellular respiration during early brain development, which may contribute to developmental disorders like ASD by altering neurodevelopment.
Project description:The overall purpose of this study is to describe the cellular composition of the human colon and its gene expression using scRNAseq and scATACseq methods. This will potentially provide is with a detailed map of the colon aiding our understanding of how diseases of the colon develop as well as the colons influence on systemic diseases such as type II diabetes.
Project description:Total RNA sequecing for human induced pluripotent derived cerebral organoids from healthy controls and schizophrenia (SCZ) patients