Project description:Papua New Guinean populations have one of the highest genetic diversity of the world. Our dataset provides genomic data covering most of the Papua New Guinean territory (n=58).
Project description:High-coverage whole genome sequences were collected to study patterns of genomic variation across the broad geography of Papua New Guinea. This region has experienced an extremely complex demographic history, including repeated bouts of admixture with archaic and modern human groups. This dataset reports whole genome sequences for 163 individuals from different regions (Mt Wilhelm, Daru, Port Moresby). Particular attention has been paid in the original study to genomic signals that are informative for population history, and adaptive history, including admixture with archaic hominins and the role of modern human admixture during the late Pleistocene and Holocene.
Project description:The settlement of Sahul, the lost continent of Oceania, remains one of the most ancient and debated human migrations. Modern New Guineans inherited a unique genetic diversity tracing back 50,000 years, and yet there is currently no model reconstructing their past population dynamics. We generated 58 new whole-genome sequences from Papua New Guinea, filling geographical gaps in previous sampling, specifically to address alternative scenarios of the initial migration to Sahul and the settlement of New Guinea. Here, we present the first genomic models for the settlement of northeast Sahul considering one or two migrations from Wallacea. Both models fit our data set, reinforcing the idea that ancestral groups to New Guinean and Indigenous Australians split early, potentially during their migration in Wallacea where the northern route could have been favored. The earliest period of human presence in Sahul was an era of interactions and gene flow between related but already differentiated groups, from whom all modern New Guineans, Bismarck islanders, and Indigenous Australians descend. The settlement of New Guinea was probably initiated from its southeast region, where the oldest archaeological sites have been found. This was followed by two migrations into the south and north lowlands that ultimately reached the west and east highlands. We also identify ancient gene flows between populations in New Guinea, Australia, East Indonesia, and the Bismarck Archipelago, emphasizing the fact that the anthropological landscape during the early period of Sahul settlement was highly dynamic rather than the traditional view of extensive isolation.
Project description:We examined genetic affinities of Aboriginal Australian and New Guinean populations by using nucleotide variation in the two hypervariable segments of the mtDNA control region (CR). A total of 318 individuals from highland Papua New Guinea (PNG), coastal PNG, and Aboriginal Australian populations were typed with a panel of 29 sequence-specific oligonucleotide (SSO) probes. The SSO-probe panel included five new probes that were used to type an additional 1,037 individuals from several Asian populations. The SSO-type data guided the selection of 78 individuals from Australia and east Indonesia for CR sequencing. A gene tree of these CR sequences, combined with published sequences from worldwide populations, contains two previously identified highland PNG clusters that do not include any Aboriginal Australians; the highland PNG clusters have coalescent time estimates of approximately 80,000 and 122,000 years ago, suggesting ancient isolation and genetic drift. SSO-type data indicate that 84% of the sample of PNG highlander mtDNA belong to these two clusters. In contrast, the Aboriginal Australian sequences are intermingled throughout the tree and cluster with sequences from multiple populations. Phylogenetic and multidimensional-scaling analyses of CR sequences and SSO types split PNG highland and Aboriginal Australian populations and link Aboriginal Australian populations with populations from the subcontinent of India. These mtDNA results do not support a close relationship between Aboriginal Australian and PNG populations but instead suggest multiple migrations in the peopling of Sahul.
Project description:Introductionsubacute sclerosing panencephalitis (SSPE) is a late, rare and usually fatal complication of measles infection. Although a very high incidence of SSPE in Papua New Guinea (PNG) was first recognized 20 years ago, estimated measles vaccine coverage has remained at ≤ 70% since and a large measles epidemic occurred in 2002. We report a series of 22 SSPE cases presenting between November 2007 and July 2009 in Madang Province, PNG, including localized clusters with the highest ever reported annual incidence.Methodology/principal findingsas part of a prospective observational study of severe childhood illness at Modilon Hospital, the provincial referral center, children presenting with evidence of meningo-encephalitis were assessed in detail including lumbar puncture in most cases. A diagnosis of SSPE was based on clinical features and presence of measles-specific IgG in cerebrospinal fluid and/or plasma. The estimated annual SSPE incidence in Madang province was 54/million population aged <20 years, but four sub-districts had an incidence >100/million/year. The distribution of year of birth of the 22 children with SSPE closely matched the reported annual measles incidence in PNG, including a peak in 2002.Conclusions/significanceSSPE follows measles infections in very young PNG children. Because PNG children have known low seroconversion rates to the first measles vaccine given at 6 months of age, efforts such as supplementary measles immunisation programs should continue in order to reduce the pool of non-immune people surrounding the youngest and most vulnerable members of PNG communities.
Project description:Studies are available that assess the risk of malaria in accordance to the body's iron store and the systematic iron supplementation of preschool children. However, only a few studies evaluated the temporal association between hemoglobin and malaria and their results are opposing. A total of 1,650 3-month-old Papua New Guinean infants were enrolled in this study and followed-up for 12 months. The risk of malaria was assessed in all children every 3 months and with each episode of fever. The incidence of clinical malaria between 3 and 15 months of age was 249 cases per 1,000 infants per year. After adjustment for potential confounding factors, a decrease of 1 g/dL of hemoglobin was associated with a nonsignificant increase of 11% for risk of malaria infection (hazard ratio, 1.11, 95% confidence interval; CI, 0.99-1.25, P = 0.076). Only children with severe anemia (hemoglobin < 8.0 g/dL) at baseline were at higher risk of malaria infection (hazard ratio, 1.72, 95% CI, 1.08-2.76, P = 0.023) during the follow-up year compared with the control group (Hemoglobin > 10.0 g/dL). This association was not statistically significant if only clinical malaria episodes were taken into account (hazard ratio, 1.42, 95% CI, 0.77-2.61, P = 0.26). Our study suggests that infants with lower hemoglobin levels are not protected against malaria infection. Further research that examines the risk of malaria in relation to both hemoglobin and iron store levels would be important to better understand this complex interaction.
Project description:AimsThe aim of the present study was to investigate the safety, tolerability and pharmacokinetics of coadministered azithromycin (AZI) and piperaquine (PQ) for treating malaria in pregnant Papua New Guinean women.MethodsThirty pregnant women (median age 22 years; 16-32 weeks' gestation) were given three daily doses of 1 g AZI plus 960 mg PQ tetraphosphate with detailed monitoring/blood sampling over 42 days. Plasma AZI and PQ were assayed using liquid chromatography-mass spectrometry and high-performance liquid chromatography, respectively. Pharmacokinetic analysis was by population-based compartmental models.ResultsThe treatment was well tolerated. The median (interquartile range) increase in the rate-corrected electrocardiographic QT interval 4 h postdose [12 (6-26) ms(0) (.5) ] was similar to that found in previous studies of AZI given in pregnancy with other partner drugs. Six women with asymptomatic malaria cleared their parasitaemias within 72 h. Two apararasitaemic women developed late uncomplicated Plasmodium falciparum infections on Days 42 and 83. Compared with previous pregnancy studies, the area under the concentration-time curve (AUC0-∞ ) for PQ [38818 (24354-52299) μg h l(-1) ] was similar to published values but there was a 52% increase in relative bioavailability with each dose. The AUC0-∞ for AZI [46799 (43526-49462) μg h l(-1) ] was at least as high as reported for higher-dose regimens, suggesting saturable absorption and/or concentration-dependent tissue uptake and clearance from the central compartment.ConclusionsAZI-PQ appears to be well tolerated and safe in pregnancy. Based on the present/other data, total AZI doses higher than 3 g for the treatment and prevention of malaria may be unnecessary in pregnant women, while clearance of parasitaemia could improve the relative bioavailability of PQ.
Project description:BackgroundIron deficiency (ID) is common in malaria-endemic settings. Intermittent preventative treatment of malaria in pregnancy (IPTp) and iron supplementation are core components of antenatal care in endemic regions to prevent adverse pregnancy outcomes. ID has been associated with reduced risk of malaria infection, and correspondingly, iron supplementation with increased risk of malaria infection, in some studies.MethodsA secondary analysis was conducted amongst 1888 pregnant women enrolled in a malaria prevention trial in Papua New Guinea. Maternal ID was defined as inflammation-corrected plasma ferritin levels < 15 μg/L at antenatal enrolment. Malaria burden (Plasmodium falciparum, Plasmodium vivax) was determined by light microscopy, polymerase chain reaction, and placental histology. Multiple logistic and linear regression analyses explored the relationship of ID or ferritin levels with indicators of malaria infection. Models were fitted with interaction terms to assess for modification of iron-malaria relationships by gravidity or treatment arm.ResultsTwo-thirds (n = 1226) and 13.7% (n = 258) of women had ID and peripheral parasitaemia, respectively, at antenatal enrolment (median gestational age: 22 weeks), and 18.7% (120/1,356) had evidence of malaria infection on placental histology. Overall, ID was associated with reduced odds of peripheral parasitaemia at enrolment (adjusted odds ratio [aOR] 0.50; 95% confidence interval [95% CI] 0.38, 0.66, P < 0.001); peripheral parasitaemia at delivery (aOR 0.68, 95% CI 0.46, 1.00; P = 0.050); and past placental infection (aOR 0.35, 95% CI 0.24, 0.50; P < 0.001). Corresponding increases in the odds of infection were observed with two-fold increases in ferritin levels. There was effect modification of iron-malaria relationships by gravidity. At delivery, ID was associated with reduced odds of peripheral parasitaemia amongst primigravid (AOR 0.44, 95% CI 0.25, 0.76; P = 0.003), but not multigravid women (AOR 1.12, 95% CI 0.61, 2.05; P = 0.720). A two-fold increase in ferritin associated with increased odds of placental blood infection (1.44, 95% CI 1.06, 1.96; P = 0.019) and active placental infection on histology amongst primigravid women only (1.24, 95% CI 1.00, 1.54; P = 0.052).ConclusionsLow maternal ferritin at first antenatal visit was associated with a lower risk of malaria infection during pregnancy, most notably in primigravid women. The mechanisms by which maternal iron stores influence susceptibility to infection with Plasmodium species require further investigation.Trial registration