Project description:Stage I and stage III/IV Follicular lymphoma samples, shallow whole genome sequencing for copy number analysis and targeted capture sequencing for mutation and translocation analysis.
Project description:Individualized diagnosis prediction classifiers were successfully constructed through expression profiling of a total of 8,644 genes in 49 patients with relapse/refractory diffuse large B cell lymphoma, prospectively treated in a randomized trial. keyword(s): Diagnosis prediction All lymphoma cases were predicted as belonging either to germical center B-cell like DLBCL or activated B cell like DLBCL based on the expression of a set of 54 genes (140 probes).
Project description:Shallow whole genome sequencing for copy number analysis and targeted capture sequencing data for translocation and mutation anslysis of paired primary and relapse PCNSL and PTL samples
Project description:Shallow whole genome sequencing of 29 BIA-ALCL patients for copy number analysis and 24 Alk-negative ALCL samples as control cohort. 7 Whole exome sequencing BIA-ALCL samples.
Project description:Intraflagellar transport (IFT) relies on the IFT complex and is required for ciliogenesis. The IFT-B complex consists of 9-10 stably associated core subunits and six "peripheral" subunits that were shown to dissociate from the core structure at moderate salt concentration. We purified the six "peripheral"IFT-B subunits of Chlamydomonas reinhardtiias recombinant proteins and show that they form a stable complex independently of the IFT-B core. We suggest a nomenclature of IFT-B1 (core) and IFT-B2 (peripheral) for the two IFT-B subcomplexes. We demonstrate that IFT88, together with the N-terminal domain of IFT52, is necessary to bridge the interaction between IFT-B1 and B2. The crystal structure of IFT52N reveals highly conserved residues critical for IFT-B1/IFT-B2 complex formation. Furthermore, we show that of the three IFT-B2 subunits containing a calponin homology (CH) domain (IFT38, 54, and 57), only IFT54 binds αβ-tubulin as a potential IFT cargo, whereas the CH domains of IFT38 and IFT57 mediate the interaction with IFT80 and IFT172, respectively. Crystal structures of IFT54 CH domains reveal that tubulin binding is mediated by basic surface-exposed residues.
Project description:Despite the effectiveness of immuno-chemotherapy, 40% of patients with diffuse large B-cell lymphoma (DLBCL) experience relapse or refractory disease. Longitudinal studies have previously focused on the mutational landscape of relapse but falling short of providing a consistent relapse-specific genetic signature. In our study, we have focussed attention on the changes in gene expression profile accompanying DLBCL relapse using archival paired diagnostic/relapse specimens from 38 de novo DLBCL patients. Cell of origin remained stable from diagnosis to relapse in 80% of patients, with only a single patient showing COO switching from ABC to GCB. Analysis of the transcriptomic changes that occur following relapse suggest ABC and GCB relapses are mediated via different mechanisms. We developed a 30-gene discriminator for ABC-DLBCLs derived from relapse-associated genes, that defined clinically distinct high and low risk subgroups in ABC-DLBCLs at diagnosis in datasets comprising both population-based and clinical trial cohorts. This signature also identified a population of <60-year-old patients with superior PFS and OS treated with Ibrutinib-R-CHOP as part of the PHOENIX trial. Altogether this new signature adds to the existing toolkit of putative genetic predictors now available in DLBCL that can be readily assessed as part of prospective clinical trials.
Project description:Background: The disease course of patients with diffuse low-grade glioma is notoriously unpredictable. Temporal and spatially distinct samples may provide insight into the evolution of clinically relevant copy number aberrations (CNAs). The purpose of this study is to identify CNAs that are indicative of aggressive tumor behaviour and can thereby complement the prognostically favorable 1p/19q co-deletion.
Results: Genome-wide, 50 base pair single-end, sequencing was performed to detect CNAs in a clinically well-characterized cohort of 98 formalin-fixed paraffin-embedded low-grade gliomas. CNAs are correlated with overall survival as an endpoint. Seventy-five additional samples from spatially distinct regions and paired recurrent tumors of the discovery cohort were analysed to interrogate the intratumoral heterogeneity and spatial evolution. Loss of 10q25.2-qter is a frequent subclonal event and significantly correlates with an unfavorable prognosis. A significant correlation is furthermore observed in a validation set of 126 and confirmation set of 184 patients. Loss of 10q25.2-qter arises in a longitudinal manner in paired recurrent tumor specimens, whereas the prognostically favorable 1p/ 19q co-deletion is the only CNA that is stable across spatial regions and recurrent tumors.
Conclusions: CNAs in low-grade gliomas display extensive intratumoral heterogeneity. Distal loss of 10q is a late onset event and a marker for reduced overall survival in low-grade glioma patients. Intratumoral heterogeneity and higher frequencies of distal 10q loss in recurrences suggest this event is involved in outgrowth to the recurrent tumor.