Project description:Primary mediastinal B-cell lymphoma (PMBCL) is a distinct subtype of diffuse large B-cell lymphoma. PMBCL has been previously studied with a variety of genomic techniques resulting in frequent detection of chromosomal gains; however, chromosomal losses have been rarely reported. This finding contrasts many other types of lymphoma, in which deletions are common. We hypothesize that segmental losses do exist but may have escaped detection by methods used in the previous studies. Using array comparative genomic hybridization to a tiling-resolution microarray encompassing the entire human genome, PMBCL samples were analyzed for genomic copy number alterations. Both gains and losses of chromosomal material were detected throughout the genome. These DNA copy number alterations were confirmed by quantitative real-time PCR. Recurrent chromosomal losses include a novel event at 1p13.1-p13.2 present in 42% of cases analyzed. We conclude that losses are present in the PMBCL genome. Given the similar frequency of losses to that of segmental gains of DNA, they are likely to play an important role in the pathogenesis of PMBCL. Keywords: array CGH, PMBCL
Project description:Primary mediastinal B-cell lymphoma (PMBCL) is a distinct subtype of diffuse large B-cell lymphoma. PMBCL has been previously studied with a variety of genomic techniques resulting in frequent detection of chromosomal gains; however, chromosomal losses have been rarely reported. This finding contrasts many other types of lymphoma, in which deletions are common. We hypothesize that segmental losses do exist but may have escaped detection by methods used in the previous studies. Using array comparative genomic hybridization to a tiling-resolution microarray encompassing the entire human genome, PMBCL samples were analyzed for genomic copy number alterations. Both gains and losses of chromosomal material were detected throughout the genome. These DNA copy number alterations were confirmed by quantitative real-time PCR. Recurrent chromosomal losses include a novel event at 1p13.1-p13.2 present in 42% of cases analyzed. We conclude that losses are present in the PMBCL genome. Given the similar frequency of losses to that of segmental gains of DNA, they are likely to play an important role in the pathogenesis of PMBCL. Whole genome tiling path array CGH of 20 PMBCL tumor samples and one cell line was performed against male reference genomic DNA. Alterations were confirmed via DNA copy number quantitative real-time PCR
Project description:Primary mediastinal large B cell lymphoma (PMBCL) is a distinct subtype of diffuse large B cell lymphoma thought to arise from thymic medullary B cells. Gene mutations underlying the molecular pathogenesis of the disease are incompletely characterized. Here, we describe novel somatic IL4R mutations in 15 out of 62 primary cases of PMBCL (24.2%) and in all PMBCL-derived cell lines tested. The majority of mutations (11/21; 52%) were hotspot single nucleotide variants in exon 8 leading to an I242N amino acid change in the transmembrane domain. Functional analyses establish this mutation as gain-of-function leading to constitutive activation of the JAK-STAT pathway and upregulation of downstream cytokine expression profiles and B cell specific antigens. Moreover, expression of I242N mutant IL4R in a mouse xenotransplantation model conferred growth advantage in vivo. The pattern of concurrent mutations within the JAK-STAT signaling pathway suggests additive/synergistic effects of these gene mutations contributing to lymphomagenesis. Our data establish IL4R mutations as novel driver alterations and provide a strong preclinical rationale for therapeutic targeting of JAK-STAT signaling in PMBCL.
Project description:Recent exome-wide studies discovered frequent somatic mutations in the epigenetic modifier ZNF217 in primary mediastinal B cell lymphoma (PMBCL) and related disorders. As functional consequences of ZNF217 alterations remain unknown, we comprehensively evaluated their impact in PMBCL. Targeted sequencing identified genetic lesions affecting ZNF217 in 33% of 157 PMBCL patients. Subsequent gene expression profiling (n=120) revealed changes in cytokine and interferon signal transduction in ZNF217-aberrant PMBCL cases. In vitro, knockout of ZNF217 led to changes in chromatin accessibility interfering with binding motifs for crucial lymphoma-associated transcription factors. This led to disturbed expression of interferon-responsive and inflammation-associated genes, altered cell behavior, and an activated B cell phenotype. Mass spectrometry demonstrates that ZNF217 acts within a histone modifier complex containing LSD1, CoREST and HDAC and interferes with H3K4 methylation and H3K27 acetylation. Concluding, our data suggest non-catalytic activity of ZNF217, which directs histone modifier complex function and controls B cell differentiation-associated patterns of chromatin structure.
Project description:Recent exome-wide studies discovered frequent somatic mutations in the epigenetic modifier ZNF217 in primary mediastinal B cell lymphoma (PMBCL) and related disorders. As functional consequences of ZNF217 alterations remain unknown, we comprehensively evaluated their impact in PMBCL. Targeted sequencing identified genetic lesions affecting ZNF217 in 33% of 157 PMBCL patients. Subsequent gene expression profiling (n=120) revealed changes in cytokine and interferon signal transduction in ZNF217-aberrant PMBCL cases. In vitro, knockout of ZNF217 led to changes in chromatin accessibility interfering with binding motifs for crucial lymphoma-associated transcription factors. This led to disturbed expression of interferon-responsive and inflammation-associated genes, altered cell behavior, and an activated B cell phenotype. Mass spectrometry demonstrates that ZNF217 acts within a histone modifier complex containing LSD1, CoREST and HDAC and interferes with H3K4 methylation and H3K27 acetylation. Concluding, our data suggest non-catalytic activity of ZNF217, which directs histone modifier complex function and controls B cell differentiation-associated patterns of chromatin structure.
Project description:Disease-defining signatures in lymphomas, driven by intricate molecular mechanisms, have advanced molecular taxonomies, refined classification, and may guide clinical management; however, the role of these signatures in driving disease hallmarks including subtype-specific organotropism remains largely unexplored. Primary mediastinal large B-cell lymphoma (PMBCL) is an exemplary lymphoma characterized by disease manifestations in the thymic niche, unique genetic alterations and immune escape. Here, we identified IRF4-C99R mutations uniquely occurring in PMBCL through mutational meta-analysis of large-scale datasets. Our functional studies, integrating multi-omics approaches with genome editing in PMBCL cells, revealed that IRF4-C99R contributes to a differentiation block phenotype. Specifically, we showed that IRF4-C99R reduces its binding to the ISRE motif within PRDM1, which encodes a key transcriptional regulator of B-cell differentiation, resulting in decreased PRDM1 expression. Additionally, IRF4-C99R suppresses TNIK, a key IFNγ pathway regulator, by impairing ISRE motif binding, thereby reducing IFNγ signaling and increasing thymus and activation-regulated chemokine (TARC) expression, which drives TARC-mediated chemotaxis of T regulatory cells. We also revealed that IRF4-C99R upregulates Ephrin Type-B Receptor 1 (EPHB1) through non-canonical AICE motif binding, and showed that overexpression of EPHB1 in an immunocompetent syngeneic lymphoma model influenced organotropism to favor thymic localization, without affecting tumor burden in other organs. IRF4-C99R mutation-induced phenotypes were validated in primary PMBCL tissues using single-nuclei RNA sequencing, confirming that the molecular mechanisms observed in vitro align with the pathophysiology of PMBCL in patients. Together, these findings demonstrate how a single genetic mutation orchestrates the coordinated regulation of hallmark traits including thymus-specific tropism in PMBCL.
Project description:Disease-defining signatures in lymphomas, driven by intricate molecular mechanisms, have advanced molecular taxonomies, refined classification, and may guide clinical management; however, the role of these signatures in driving disease hallmarks including subtype-specific organotropism remains largely unexplored. Primary mediastinal large B-cell lymphoma (PMBCL) is an exemplary lymphoma characterized by disease manifestations in the thymic niche, unique genetic alterations and immune escape. Here, we identified IRF4-C99R mutations uniquely occurring in PMBCL through mutational meta-analysis of large-scale datasets. Our functional studies, integrating multi-omics approaches with genome editing in PMBCL cells, revealed that IRF4-C99R contributes to a differentiation block phenotype. Specifically, we showed that IRF4-C99R reduces its binding to the ISRE motif within PRDM1, which encodes a key transcriptional regulator of B-cell differentiation, resulting in decreased PRDM1 expression. Additionally, IRF4-C99R suppresses TNIK, a key IFNγ pathway regulator, by impairing ISRE motif binding, thereby reducing IFNγ signaling and increasing thymus and activation-regulated chemokine (TARC) expression, which drives TARC-mediated chemotaxis of T regulatory cells. We also revealed that IRF4-C99R upregulates Ephrin Type-B Receptor 1 (EPHB1) through non-canonical AICE motif binding, and showed that overexpression of EPHB1 in an immunocompetent syngeneic lymphoma model influenced organotropism to favor thymic localization, without affecting tumor burden in other organs. IRF4-C99R mutation-induced phenotypes were validated in primary PMBCL tissues using single-nuclei RNA sequencing, confirming that the molecular mechanisms observed in vitro align with the pathophysiology of PMBCL in patients. Together, these findings demonstrate how a single genetic mutation orchestrates the coordinated regulation of hallmark traits including thymus-specific tropism in PMBCL.
Project description:Disease-defining signatures in lymphomas, driven by intricate molecular mechanisms, have advanced molecular taxonomies, refined classification, and may guide clinical management; however, the role of these signatures in driving disease hallmarks including subtype-specific organotropism remains largely unexplored. Primary mediastinal large B-cell lymphoma (PMBCL) is an exemplary lymphoma characterized by disease manifestations in the thymic niche, unique genetic alterations and immune escape. Here, we identified IRF4-C99R mutations uniquely occurring in PMBCL through mutational meta-analysis of large-scale datasets. Our functional studies, integrating multi-omics approaches with genome editing in PMBCL cells, revealed that IRF4-C99R contributes to a differentiation block phenotype. Specifically, we showed that IRF4-C99R reduces its binding to the ISRE motif within PRDM1, which encodes a key transcriptional regulator of B-cell differentiation, resulting in decreased PRDM1 expression. Additionally, IRF4-C99R suppresses TNIK, a key IFNγ pathway regulator, by impairing ISRE motif binding, thereby reducing IFNγ signaling and increasing thymus and activation-regulated chemokine (TARC) expression, which drives TARC-mediated chemotaxis of T regulatory cells. We also revealed that IRF4-C99R upregulates Ephrin Type-B Receptor 1 (EPHB1) through non-canonical AICE motif binding, and showed that overexpression of EPHB1 in an immunocompetent syngeneic lymphoma model influenced organotropism to favor thymic localization, without affecting tumor burden in other organs. IRF4-C99R mutation-induced phenotypes were validated in primary PMBCL tissues using single-nuclei RNA sequencing, confirming that the molecular mechanisms observed in vitro align with the pathophysiology of PMBCL in patients. Together, these findings demonstrate how a single genetic mutation orchestrates the coordinated regulation of hallmark traits including thymus-specific tropism in PMBCL.
Project description:The survival of 10% of patients with acute myelogenous leukemia (AML) carrying mutations in TP53 is dismal. Here, we estimated the fraction of AML patients with impaired TP53-mediated apoptosis despite TP53 WT status and their survival. We report the results of a detailed characterization of responses to treatment with the MDM2 inhibitor MI219, a p53 protein stabilizer, ex vivo in AML blasts from 165 patients. In total 33% of AML were resistant to MDM2 inhibitor induced apoptosis, of which 15% carried TP53 mutation and 18% were TP53 WT. We conducted array-based expression profiling of ten resistant and ten sensitive AML cases all with WT TP53, respectively, at baseline and after 2h and 6h of MDM2 inhibitor treatment. While sensitive cases showed the induction of classical TP53 responses genes, this was largely absent in resistant cases. The sensitive and resistant AML samples at baseline furthermore differed in the expression of inflammation-related and mitochondrial genes. Clinically, the survival of TP53 mutated AML or AML with defective MDM2 inhibitor induced TP53-mediated apoptosis despite WT TP53 in this cohort was 0% and 11%, respectively. In summary, we show prevalent multi-causal defects in TP53-mediated apoptosis in AML resulting in extremely poor patient survival.