Project description:Detection of causal variant for thrombocytopenia and second hit causing malignant disease onset by next-generation sequencing. The sample was taken at MDS diagnosis, the illness later developed into AML.
Project description:AML/MDS patients carrying 11q amplifications involving the mixed lineage leukemia gene (MLL) locus are characterized by a later onset, a complex aberrant karyotype (CAK) frequently including deletions within 5q, 17p and 7q, as well as fast progression of the disease with extremely poor prognosis. We and other have shown that the MLL gene is over expressed in amplified cases, however, in most of the cases the amplified region is not restricted to the MLL locus. In the present study we investigated 19 patients with AML/MDS and MLL gain/amplification [15 AML (two secondary, following MDS and PV, and three therapy related) and 4 MDS cases (two therapy related)]. By means of array CGH performed in 12 patients (GSE9928) we were able to delineate the minimal deleted regions within 5q, 17p and 7q and identified three independent regions 11q/I-III that were amplified in all cases. Gene expression profiles established in 15 cases were used to define the candidate genes within these regions. Interestingly, analysis of our data suggests an interdependency of genes influenced by losses of 5q and 17p and expression of genes present in 11q23-25. Additionally, we demonstrate that the gene expression signature can be used to discriminate AML/MDS with MLL amplification from all other types of AML, thus, indicating specific pathogenesis present in this entity. Experiment Overall Design: In this study, gene expression profiling performed for 15 AML patients. Experiment Overall Design: aCGH analysis performed on 12 DNA samples derived from patients with AML, preselected for the presence of MLL amplifications, were analysed on a submegabase resolution BAC array. No replicates, no dye swap was done (GSE9928).
Project description:Mitochondrial disorders (MDs) are among the most common inborn errors of metabolism and primarily arise from defects in oxidative phosphorylation (OXPHOS). Their complex mode of inheritance and diverse clinical presentations render the diagnosis of MDs challenging and, to date, most lack a cure. Here, we build on previous efforts to discover genes necessary for OXPHOS and report a highly complementary galactose-sensitized CRISPR-Cas9 “growth” screen, presenting an updated inventory now with 481 OXPHOS genes, including 157 linked to MDs. We further focus on FAM136A, a gene associated with Ménière’s disease and show that it supports inter-membrane space protein homeostasis and OXPHOS in cell lines, mice, and patients. Our study identifies a mitochondrial basis in a familial form of Ménière’s disease (fMD), provides a comprehensive resource of OXPHOS-related genes, and sheds light on the pathways involved in mitochondrial disorders, with the potential to guide future diagnostics and treatments for MDs.
Project description:Mitochondrial disorders (MDs) are among the most common inborn errors of metabolism and primarily arise from defects in oxidative phosphorylation (OXPHOS). Their complex mode of inheritance and diverse clinical presentations render the diagnosis of MDs challenging and, to date, most lack a cure. Here, we build on previous efforts to discover genes necessary for OXPHOS and report a highly complementary galactose-sensitized CRISPR-Cas9 “growth” screen, presenting an updated inventory now with 481 OXPHOS genes, including 157 linked to MDs. We further focus on FAM136A, a gene associated with Ménière’s disease and show that it supports inter-membrane space protein homeostasis and OXPHOS in cell lines, mice, and patients. Our study identifies a mitochondrial basis in a familial form of Ménière’s disease (fMD), provides a comprehensive resource of OXPHOS-related genes, and sheds light on the pathways involved in mitochondrial disorders, with the potential to guide future diagnostics and treatments for MDs.
Project description:Mitochondrial disorders (MDs) are among the most common inborn errors of metabolism and primarily arise from defects in oxidative phosphorylation (OXPHOS). Their complex mode of inheritance and diverse clinical presentations render the diagnosis of MDs challenging and, to date, most lack a cure. Here, we build on previous efforts to discover genes necessary for OXPHOS and report a highly complementary galactose-sensitized CRISPR-Cas9 “growth” screen, presenting an updated inventory now with 481 OXPHOS genes, including 157 linked to MDs. We further focus on FAM136A, a gene associated with Ménière’s disease and show that it supports inter-membrane space protein homeostasis and OXPHOS in cell lines, mice, and patients. Our study identifies a mitochondrial basis in a familial form of Ménière’s disease (fMD), provides a comprehensive resource of OXPHOS-related genes, and sheds light on the pathways involved in mitochondrial disorders, with the potential to guide future diagnostics and treatments for MDs.
Project description:arise from defects in oxidative phosphorylation (OXPHOS). Their complex mode of inheritance and diverse clinical presentations render the diagnosis of MDs challenging and, to date, most lack a cure. Here, we build on previous efforts to discover genes necessary for OXPHOS and report a highly complementary galactose-sensitized CRISPR-Cas9 “growth” screen, presenting an updated inventory now with 481 OXPHOS genes, including 157 linked to MDs. We further focus on FAM136A, a gene associated with Ménière’s disease and show that it supports inter-membrane space protein homeostasis and OXPHOS in cell lines, mice, and patients. Our study identifies a mitochondrial basis in a familial form of Ménière’s disease (fMD), provides a comprehensive resource of OXPHOS-related genes, and sheds light on the pathways involved in mitochondrial disorders, with the potential to guide future diagnostics and treatments for MDs.
Project description:Germline, mono-allelic mutations in RUNX1 cause familial platelet disorder (RUNX1-FPD) that evolves into myeloid malignancy (FPD-MM): MDS or AML. FPD-MM commonly harbors co-mutations in the second RUNX1 allele and/or other epigenetic regulators. Here we utilized patient-derived (PD) FPD-MM cells and established the first FPD-MM AML cell line (GMR-AML1). GMR-AML1 cells exhibited active super-enhancers of MYB, MYC, BCL2 and CDK6, augmented expressions of c-Myc, c-Myb, EVI1 and PLK1 and surface markers of AML stem cells. In longitudinally studied bone marrow cells from a patient at FPD-MM vs RUNX1-FPD state, we confirmed increased chromatin accessibility and mRNA expressions of MYB, MECOM and BCL2 in FPD-MM cells. GMR-AML1 and PD FPD-MM cells were sensitive to homoharringtonine (HHT or omacetaxine) or mebendazole-induced lethality, associated with repression of c-Myc, EVI1, PLK1, CDK6 and MCL1. Co-treatment with MB and the PLK1 inhibitor volasertib exerted synergistic in vitro lethality in GMR-AML1 cells. In luciferase-expressing GMR-AML1 xenograft model, MB, omacetaxine or volasertib monotherapy, or co-treatment with MB and volasertib, significantly reduced AML burden and improved survival in the immune-depleted mice. These findings highlight the molecular features of FPD-MM progression and demonstrate HHT, MB and/or volasertib as effective agents against cellular models of FPD-MM.
Project description:Germline, mono-allelic mutations in RUNX1 cause familial platelet disorder (RUNX1-FPD) that evolves into myeloid malignancy (FPD-MM): MDS or AML. FPD-MM commonly harbors co-mutations in the second RUNX1 allele and/or other epigenetic regulators. Here we utilized patient-derived (PD) FPD-MM cells and established the first FPD-MM AML cell line (GMR-AML1). GMR-AML1 cells exhibited active super-enhancers of MYB, MYC, BCL2 and CDK6, augmented expressions of c-Myc, c-Myb, EVI1 and PLK1 and surface markers of AML stem cells. In longitudinally studied bone marrow cells from a patient at FPD-MM vs RUNX1-FPD state, we confirmed increased chromatin accessibility and mRNA expressions of MYB, MECOM and BCL2 in FPD-MM cells. GMR-AML1 and PD FPD-MM cells were sensitive to homoharringtonine (HHT or omacetaxine) or mebendazole-induced lethality, associated with repression of c-Myc, EVI1, PLK1, CDK6 and MCL1. Co-treatment with MB and the PLK1 inhibitor volasertib exerted synergistic in vitro lethality in GMR-AML1 cells. In luciferase-expressing GMR-AML1 xenograft model, MB, omacetaxine or volasertib monotherapy, or co-treatment with MB and volasertib, significantly reduced AML burden and improved survival in the immune-depleted mice. These findings highlight the molecular features of FPD-MM progression and demonstrate HHT, MB and/or volasertib as effective agents against cellular models of FPD-MM.
Project description:Germline, mono-allelic mutations in RUNX1 cause familial platelet disorder (RUNX1-FPD) that evolves into myeloid malignancy (FPD-MM): MDS or AML. FPD-MM commonly harbors co-mutations in the second RUNX1 allele and/or other epigenetic regulators. Here we utilized patient-derived (PD) FPD-MM cells and established the first FPD-MM AML cell line (GMR-AML1). GMR-AML1 cells exhibited active super-enhancers of MYB, MYC, BCL2 and CDK6, augmented expressions of c-Myc, c-Myb, EVI1 and PLK1 and surface markers of AML stem cells. In longitudinally studied bone marrow cells from a patient at FPD-MM vs RUNX1-FPD state, we confirmed increased chromatin accessibility and mRNA expressions of MYB, MECOM and BCL2 in FPD-MM cells. GMR-AML1 and PD FPD-MM cells were sensitive to homoharringtonine (HHT or omacetaxine) or mebendazole-induced lethality, associated with repression of c-Myc, EVI1, PLK1, CDK6 and MCL1. Co-treatment with MB and the PLK1 inhibitor volasertib exerted synergistic in vitro lethality in GMR-AML1 cells. In luciferase-expressing GMR-AML1 xenograft model, MB, omacetaxine or volasertib monotherapy, or co-treatment with MB and volasertib, significantly reduced AML burden and improved survival in the immune-depleted mice. These findings highlight the molecular features of FPD-MM progression and demonstrate HHT, MB and/or volasertib as effective agents against cellular models of FPD-MM.
Project description:Germline, mono-allelic mutations in RUNX1 cause familial platelet disorder (RUNX1-FPD) that evolves into myeloid malignancy (FPD-MM): MDS or AML. FPD-MM commonly harbors co-mutations in the second RUNX1 allele and/or other epigenetic regulators. Here we utilized patient-derived (PD) FPD-MM cells and established the first FPD-MM AML cell line (GMR-AML1). GMR-AML1 cells exhibited active super-enhancers of MYB, MYC, BCL2 and CDK6, augmented expressions of c-Myc, c-Myb, EVI1 and PLK1 and surface markers of AML stem cells. In longitudinally studied bone marrow cells from a patient at FPD-MM vs RUNX1-FPD state, we confirmed increased chromatin accessibility and mRNA expressions of MYB, MECOM and BCL2 in FPD-MM cells. GMR-AML1 and PD FPD-MM cells were sensitive to homoharringtonine (HHT or omacetaxine) or mebendazole-induced lethality, associated with repression of c-Myc, EVI1, PLK1, CDK6 and MCL1. Co-treatment with MB and the PLK1 inhibitor volasertib exerted synergistic in vitro lethality in GMR-AML1 cells. In luciferase-expressing GMR-AML1 xenograft model, MB, omacetaxine or volasertib monotherapy, or co-treatment with MB and volasertib, significantly reduced AML burden and improved survival in the immune-depleted mice. These findings highlight the molecular features of FPD-MM progression and demonstrate HHT, MB and/or volasertib as effective agents against cellular models of FPD-MM.