Project description:Retinoblastoma is the most common intraocular cancer of infancy and childhood, with an incidence of one case per 15,000 - 20,000 live births. An early event in retinoblastoma genesis is a functional loss of both alleles of the RB1 gene. However, other genes are likely to be involved in the development of this cancer. In this study we sought to build a comprehensive molecular portrait of this cancer by performing transcriptomic, methylomic, as well as genomic profiling of primary retinoblastoma samples. The patients whose tumors were studied had received no treatment prior to surgical enucleation. This SuperSeries is composed of the SubSeries listed below.
Project description:Background: Retinoblastoma is a rare pediatric eye cancer caused by mutations in the RB1 gene, which regulates retinal cell growth. Early detection and treatment are critical for pre-venting vision loss and improving survival outcomes. This study aimed to perform an inte-grated proteotranscriptomic characterization of human retinoblastoma to provide a deeper understanding of disease biology and to identify novel therapeutic targets. Methods: Paired tumor and adjacent retinal tissue samples were dissected from seven eyes affected by retinoblastoma. The global transcriptome and proteome were determined using RNA sequencing and liquid chromatography-mass spectrometry from the same samples. The spatially resolved cellular landscape was assessed using Imaging Mass Cytometry (IMC). Results: The correlation between RNA and protein level was moderate (Pearson’s R = 0.339, p < 10-16) with variations across different pathways. While biological processes like visual perception were similarly regulated on the RNA and protein level, others, such as cell cycle processes and glycolysis were predominantly active at the protein level. IMC identified more than 67,000 single cells in distinct clusters, including antigen presenting cells, T cells, stroma cells, vascular cells and two clusters of proliferating and CD44/c-Myc positive tumor cells. In retinoblastoma, we observed increased apoptotic signals in T cells and higher ex-pression of CD68 in antigen presenting cells compared to control tissue. Conclusions: Retinoblastoma's key biological processes are predominantly regulated at either the RNA or protein level, underscoring the value of an integrated proteotranscriptomic approach. Elevated caspase 3 activity in tumor-associated T cells may indicate potential im-mune escape mechanisms and CD44+ and high-c-Myc-expressing tumor cells may repre-sent cancer stem cells with possible involvement in metastasis, warranting further validation. Our multilayered approach could pave the way for enhanced molecular assessments and novel targeted therapies for human retinoblastoma.
Project description:Retinoblastoma is the most common intraocular cancer of infancy and childhood, with an incidence of one case per 15,000 - 20,000 live births. An early event in retinoblastoma genesis is a functional loss of both alleles of the RB1 gene. However, other genes are likely to be involved in the development of this cancer. In this study we sought to build a comprehensive molecular portrait of this cancer by performing transcriptomic, methylomic, genomic profiling of primary retinoblastoma samples. Most of the patients whose tumors were studied had received no treatment prior to surgical enucleation.
Project description:Retinoblastoma is the most common intraocular cancer of infancy and childhood, with an incidence of one case per 15,000 - 20,000 live births. An early event in retinoblastoma genesis is a functional loss of both alleles of the RB1 gene. However, other genes are likely to be involved in the development of this cancer. In this study we sought to build a comprehensive molecular portrait of this cancer by performing transcriptomic, methylomic, genomic profiling of primary retinoblastoma samples. Most of the patients whose tumors were studied had received no treatment prior to surgical enucleation.
Project description:Retinoblastoma is the most common intraocular cancer of infancy and childhood, with an incidence of one case per 15,000 - 20,000 live births. An early event in retinoblastoma genesis is a functional loss of both alleles of the RB1 gene. However, other genes are likely to be involved in the development of this cancer. In this study we sought to build a comprehensive molecular portrait of this cancer by performing transcriptomic, methylomic, genomic profiling of primary retinoblastoma samples. Most of the patients whose tumors were studied had received no treatment prior to surgical enucleation.
Project description:Background: Retinoblastoma (RB) is the most common malignant childhood tumor of the eye and results from inactivation of both alleles of the RB1 gene. Nowadays RB genetic diagnosis requires classical chromosome investigations, Multiplex Ligation-dependent Probe Amplification analysis (MLPA) and Sanger sequencing. Nevertheless, these techniques show some limitations. We report our experience on a cohort of RB patients using a combined approach of Next-Generation Sequencing (NGS) and RB1 custom array-Comparative Genomic Hybridization (aCGH). Methods: A total of 65 patients with retinoblastoma were studied: 29 cases of bilateral RB and 36 cases of unilateral RB. All patients were previously tested with conventional cytogenetics and MLPA techniques. Fifty-three samples were then analysed using NGS. Eleven cases were analysed by RB1 custom aCGH. One last case was studied only by classic cytogenetics. Finally, it has been tested, in a lab sensitivity assay, the capability of NGS to detect artificial mosaicism series in previously recognized samples prepared at 3 different mosaicism frequencies: 10%, 5%, 1%. Results: Of the 29 cases of bilateral RB, 28 resulted positive (96.5%) to the genetic investigation: 22 point mutations and 6 genomic rearrangements (four intragenic and two macrodeletion). A novel germline intragenic duplication, from exon18 to exon 23, was identified in a proband with bilateral RB. Of the 36 available cases of unilateral RB, 8 patients resulted positive (22%) to the genetic investigation: 3 patients showed point mutations while 5 carried large deletion. Finally, we successfully validated, in a lab sensitivity assay, the capability of NGS to accurately measure level of artificial mosaicism down to 1%. Conclusions: NGS and RB1-custom aCGH have demonstrated to be an effective combined approach in order to optimize the overall diagnostic procedures of RB. Custom aCGH is able to accurately detect genomic rearrangements allowing the characterization of their extension. NGS is extremely accurate in detecting single nucleotide variants, relatively simple to perform, cost savings and efficient and has confirmed a high sensitivity and accuracy in identifying low levels of artificial mosaicisms.
Project description:Retinoblastoma is the most common intraocular cancer of infancy and childhood, with an incidence of one case per 15,000 - 20,000 live births. An early event in retinoblastoma genesis is a functional loss of both alleles of the RB1 gene. However, other genes are likely to be involved in the development of this cancer. In this study we sought to build a comprehensive molecular portrait of this cancer by performing transcriptomic, methylomic, genomic profiling of primary retinoblastoma samples. Most of the patients whose tumors were studied had received no treatment prior to surgical enucleation.