Project description:To characterize breed-specific difference among four Korean native chicken breeds and White Leghorn, we measured their transcriptomes at liver tissue using Affymetrix Chicken gene 1.0 ST array platform.
Project description:The Yeonsan Ogye (Ogye) is the rare black chicken breed domesticated in Korean peninsula, which has been noted for entire black color upon its appearances including feather, skin, comb, eyes, shank, claws and internal organs. In this study, whole genome, transcriptome and epigenome sequencings of Ogye were performed using high-throughput NGS sequencing platforms. We have produced Illumina short-reads (Paired-End, Mate-Pair and FOSMID) and PacBio long-reads for whole genome sequencing (WGS), 1.4 billion reads for RNA-seq, and 123 million reads for RRBS (reduced representation bisulfite sequencing) data. Using WGS data, Ogye genome has been assembled, and coding/non-coding transcriptome maps were constructed on Ogye genome given largescale sequencing data. We have predicted 17,472 (3,550 newly annotated and 13,922 known) protein-coding transcripts, and 9,443 (6,689 novel and 2,754 known) long non-coding RNAs (lncRNAs).
Project description:The Yeonsan Ogye (Ogye) is the rare black chicken breed domesticated in Korean peninsula, which has been noted for entire black color upon its appearances including feather, skin, comb, eyes, shank, claws and internal organs. In this study, whole genome, transcriptome and epigenome sequencings of Ogye were performed using high-throughput NGS sequencing platforms. We have produced Illumina short-reads (Paired-End, Mate-Pair and FOSMID) and PacBio long-reads for whole genome sequencing (WGS), 1.4 billion reads for RNA-seq, and 123 million reads for RRBS (reduced representation bisulfite sequencing) data. Using WGS data, Ogye genome has been assembled, and coding/non-coding transcriptome maps were constructed on Ogye genome given largescale sequencing data. We have predicted 17,472 (3,550 newly annotated and 13,922 known) protein-coding transcripts, and 9,443 (6,689 novel and 2,754 known) long non-coding RNAs (lncRNAs).
Project description:To identify transcriptional markers for beef traits related to meat tenderness and moisture, we measured the transcriptome of the Longissimus dorsi skeletal muscle in 10 Korean native cattle (KNC). We analyzed the correlation between the beef transcriptome and measurements of four different beef traits, shear force (SF), water holding capacity (WHC), cooking loss (CL), and loin eye area (LEA). We obtained non-overlapping and unique panels of genes showing strong correlations (|r| > 0.8) with SF, WHC, CL, and LEA, respectively. Functional studies of these genes indicated that SF was mainly related to energy metabolism, and LEA to rRNA processing. Interestingly, our data suggested that WHC is influenced by protein metabolism. Overall, the skeletal muscle transcriptome pointed to the importance of energy and protein metabolism in determining meat quality after the aging process. The panels of transcripts for beef traits may be useful for predicting meat tenderness and moisture.
Project description:The pig could be a useful model to characterize molecular aspects determining several delicate phenotypes because they have been bred for those characteristics. The Korean native pig (KNP) is a regional breed in Korea that was characterized by relatively high intramuscular fat content and reddish meat color compared to other western breeds such as Yorkshire (YS). YS grew faster and contained more lean muscle than KNP. We compared the KNP to Yorksire to find molecular clues determining muscle characteristics. The comparison of skeletal gene expression profiles between these two breeds showed molecular differences in muscle. We found 82 differentially expressed genes (DEGs) defined by fold change (more than 1.5 fold difference) and statistical significance (within 5% of false discovery rate). Functional analyses of these DEGs indicated up-regulation of most genes involved in cell cycle arrest, down-regulation of most genes involved in cellular differentiation and its inhibition, down-regulation of most genes encoding component of muscular-structural system, and up-regulation of most genes involved in diverse metabolism in KNP. Especially, DEGs in above-mentioned categories included a large number of genes encoding proteins directly or indirectly involved in p53 pathway. Our results indicated a possible role of p53 to determine muscle characteristics between these two breeds.
Project description:A database of genes showing differences in expression in synovium tissues and normal synovium tissues of Korean patients with advanced osteoarthritis was established.
Project description:To identify transcriptional markers for beef traits related to meat tenderness and moisture, we measured the transcriptome of the Longissimus dorsi skeletal muscle in 10 Korean native cattle (KNC). We analyzed the correlation between the beef transcriptome and measurements of four different beef traits, shear force (SF), water holding capacity (WHC), cooking loss (CL), and loin eye area (LEA). We obtained non-overlapping and unique panels of genes showing strong correlations (|r| > 0.8) with SF, WHC, CL, and LEA, respectively. Functional studies of these genes indicated that SF was mainly related to energy metabolism, and LEA to rRNA processing. Interestingly, our data suggested that WHC is influenced by protein metabolism. Overall, the skeletal muscle transcriptome pointed to the importance of energy and protein metabolism in determining meat quality after the aging process. The panels of transcripts for beef traits may be useful for predicting meat tenderness and moisture. Experiment Overall Design: Gene expression profiles were correlated with beef traits measured at the same cattle.
Project description:The pig could be a useful model to characterize molecular aspects determining several delicate phenotypes because they have been bred for those characteristics. The Korean native pig (KNP) is a regional breed in Korea that was characterized by relatively high intramuscular fat content and reddish meat color compared to other western breeds such as Yorkshire (YS). YS grew faster and contained more lean muscle than KNP. We compared the KNP to Yorksire to find molecular clues determining muscle characteristics. The comparison of skeletal gene expression profiles between these two breeds showed molecular differences in muscle. We found 82 differentially expressed genes (DEGs) defined by fold change (more than 1.5 fold difference) and statistical significance (within 5% of false discovery rate). Functional analyses of these DEGs indicated up-regulation of most genes involved in cell cycle arrest, down-regulation of most genes involved in cellular differentiation and its inhibition, down-regulation of most genes encoding component of muscular-structural system, and up-regulation of most genes involved in diverse metabolism in KNP. Especially, DEGs in above-mentioned categories included a large number of genes encoding proteins directly or indirectly involved in p53 pathway. Our results indicated a possible role of p53 to determine muscle characteristics between these two breeds. Experiment Overall Design: Comparing gene expression profiles to discover differentially expressed genes from skeletal muscles of two different pig breeds.